98%
921
2 minutes
20
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020458 | PMC |
http://dx.doi.org/10.1186/s12951-024-02442-3 | DOI Listing |
Inorg Chem
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
A series of six quinary rare-earth sulfides CeEuNaSiS, CeEuKSiS, CeEuRbSiS, CeEuCsSiS, CeEuAgSiS, and CeEuCuSiS were obtained in an alkali iodide flux using the boron-chalcogen mixture (BCM) method. Single crystal X-ray diffraction was used to determine the structures of the high quality single crystals that were grown; their elemental compositions were confirmed by energy-dispersive spectroscopy (EDS). The compounds crystallize in the hexagonal crystal system in the noncentrosymmetric space group 6.
View Article and Find Full Text PDFPlant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Enhancing anodic hydroxyl (OH) coverage and suppressing leaching of active metal sites are essential for developing efficient and durable alkaline oxygen evolution reaction (OER) electrocatalysts. Herein, we propose amorphous cerium oxide (CeO)-mediated amorphous/crystalline heterointerface engineering to enhance OH coverage and leaching resistance in CeO/Mo-NiS for high-performance OER. CeO with an oxyphilic surface facilitates OH adsorption, promoting in situ reconstruction of NiS into nickel hydroxyl oxide (NiOOH) with significantly enhanced OH coverage and thereby accelerating OER kinetics.
View Article and Find Full Text PDFBiomaterials
September 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address: hongj
Radioresistance poses a significant obstacle in the management of Non-Small Cell Lung Cancer (NSCLC), often diminishing the effectiveness of radiotherapy and leading to treatment failures and adverse clinical outcomes. This study develops radioresistant NSCLC models, revealing that Secreted Protein Acidic and Rich in Cysteine (SPARC) as a crucial modulator of this resistance, through the inhibition of ferroptosis. To address this radioresistance, we propose a novel ferroptosis-oriented radiosensitization strategy specifically designed to enhance radiotherapy effectiveness in radioresistant NSCLC.
View Article and Find Full Text PDFCurr Biol
September 2025
Oosterland, Netherlands.
Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.
View Article and Find Full Text PDF