Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gaussian Graphical Models (GGM) have been widely used in biomedical research to explore complex relationships between many variables. There are well established procedures to build GGMs from a sample of independent and identical distributed observations. However, many studies include clustered and longitudinal data that result in correlated observations and ignoring this correlation among observations can lead to inflated Type I error. In this paper, we propose a Bootstrap algorithm to infer GGM from correlated data. We use extensive simulations of correlated data from family-based studies to show that the Bootstrap method does not inflate the Type I error while retaining statistical power compared to alternative solutions. We apply our method to learn the GGM that represents complex relations between 47 Polygenic Risk Scores generated using genome-wide genotype data from a family-based study known as the Long Life Family Study. By comparing it to the conventional methods that ignore within-cluster correlation, we show that our method controls the Type I error well in this real example.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014549PMC
http://dx.doi.org/10.1101/2024.04.03.587948DOI Listing

Publication Analysis

Top Keywords

correlated data
12
type error
12
gaussian graphical
8
graphical models
8
data family-based
8
data
5
learning gaussian
4
correlated
4
models correlated
4
data gaussian
4

Similar Publications

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Background: Mobile health (mHealth) interventions can be effective for people living with HIV, who are sensitive to privacy breach risks. Understanding the perceived experiences of intervention participants can provide comprehensive insights into potential users and predict intervention effectiveness. Thus, it is necessary to plan engagement measurement and consider ways to enhance engagement during the app development phase.

View Article and Find Full Text PDF

Background: Ecological momentary assessment (EMA) is increasingly being incorporated into intervention studies to acquire a more fine-grained and ecologically valid assessment of change. The added utility of including relatively burdensome EMA measures in a clinical trial hinges on several psychometric assumptions, including that these measure are (1) reliable, (2) related to but not redundant with conventional self-report measures (convergent and discriminant validity), (3) sensitive to intervention-related change, and (4) associated with a clinically relevant criterion of improvement (criterion validity) above conventional self-report measures (incremental validity).

Objective: This study aimed to evaluate the reliability, validity, and sensitivity to change of conventional self-report versus EMA measures of rumination improvement.

View Article and Find Full Text PDF

Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.

Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.

View Article and Find Full Text PDF

Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.

View Article and Find Full Text PDF