98%
921
2 minutes
20
Background: Knowing the mechanical properties of trabecular bone is critical for many branches of orthopaedic research. Trabecular bone is anisotropic and the principal trabecular direction is usually aligned with the load it transmits. It is therefore critical that the mechanical properties are measured as close as possible to this direction, which is often perpendicular to a curved articulating surface.
Methods: This study presents a method to extract trabecular bone cores perpendicular to a curved articulating surface of the distal femur. Cutting guides were generated from computed tomography scans of 12 human distal femora and a series of cutting tools were used to release cylindrical bone cores from the femora. The bone cores were then measured to identify the angle between the bone core axis and the principal trabecular axis.
Findings: The method yielded an 83% success rate in core extraction over 10 core locations per distal femur specimen. In the condyles, 97% of extracted cores were aligned with the principal trabecular direction.
Interpretation: This method is a reliable way of extracting trabecular bone specimens perpendicular to a curved articular surface and could be useful across the field of orthopaedic research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2024.106240 | DOI Listing |
Front Pharmacol
August 2025
Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Drive, Charlottesville, VA, 22911, United States.
Seatbelt-induced pelvic iliac wing injuries have been observed since the 1970s, but only recently has there been quantification of fracture tolerance and injury risk of the iliac wing. Previous studies have shown a wide variation in iliac wing fracture tolerance with no significant relationships to pelvis size, sex, or other factors. A weighted average bone density (BD) calculation of the entire iliac wing produced the best predictive performance of fracture tolerance in parametric (Weibull) survival models.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Servicio de Ortopedia y Traumatología, Hospital de San Rafael, Hospitales Pascual. Cádiz, España.
Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation.
Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty.
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFJ Biomech Eng
September 2025
Texas Tech University Box 41021 Lubbock, TX 79409.
Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.
View Article and Find Full Text PDF