98%
921
2 minutes
20
Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2024.03.019 | DOI Listing |
J Am Chem Soc
September 2025
Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.
Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China. Electronic address:
Ethnopharmacological Relevance: Dark tea, a post-fermented tea, has traditionally been used to regulate liver disorders. As an ethnomedicinal plant, its efficacy in alleviating chronic liver disease has been demonstrated.
Aim Of The Study: This study explored the protective effect and potential mechanism of dark tea extract (DTE) against hepatic fibrosis.
PLoS One
September 2025
Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
Background: Hepatic fibrosis unfolds as a pathological buildup of extracellular matrix triggered by liver injury. Thioacetamide (TAA) plays a versatile role across various fields-from industrial processes and laboratory research to chemical stabilization. Teucrium plants, widely traditional plants, owing to its myriads of pharmacological activities.
View Article and Find Full Text PDFBiomolecules
July 2025
Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with L. extract as a reducing and capping agent (NPCS), and were then mixed with L.
View Article and Find Full Text PDFFront Immunol
August 2025
Research and Development Department, Joint Biosciences (SH) Ltd, Shanghai, China.
Introduction: Vesicular stomatitis virus (VSV) is a promising oncolytic viral platform due to its short replication cycle, broad tissue tropism, low natural infection rate in humans, and a small genome that is easy to genetically manipulate. Leveraging these advantages, we developed an attenuated oncolytic VSV-based virus, OVV-01, encoding the tumor-associated antigen (TAA) NY-ESO-1.
Methods: OVV-01 was constructed by inserting the NY-ESO-1 gene into a VSV backbone.