Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009415PMC
http://dx.doi.org/10.1038/s41467-024-46584-2DOI Listing

Publication Analysis

Top Keywords

polyamide membranes
12
polymer films
8
electron tomography
8
coarse-grained molecular
8
molecular dynamics
8
nothingness formation
4
formation functional
4
functional relevance
4
relevance voids
4
voids polymer
4

Similar Publications

Double Nanofoaming Enhanced Interfacial Polymerization toward Ultra-High-Performance Nanofiltration Membranes.

Environ Sci Technol

September 2025

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.

Polyamide (PA) nanofiltration (NF) membranes represent a promising approach to safe drinking water production. Yet, selective removal of contaminants while retaining essential minerals remains a critical challenge for cost-effective water treatment processes. Here, we employed ammonia bicarbonate (AB) as an economical additive to modify interfacial polymerization (IP) for developing high-performance NF membranes suitable for drinking water applications.

View Article and Find Full Text PDF

Multifunctional PAMAM nanoparticles with sequential antimicrobial-remineralization therapy for dentin caries management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)I-NH (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention.

View Article and Find Full Text PDF

In this study, we present a class of thin-film crosslinked (TFX) composite reverse osmosis (RO) membranes that resist physical compaction at ultrahigh pressures (up to 200 bar). Since RO membranes experience compaction at virtually all pressure ranges, the ability to resist compaction has widespread implications for RO membrane technology. The process described herein involves crosslinking a phase inverted porous polyimide (PI) support membrane followed by interfacial polymerization of a polyamide layer, thereby forming a fully thermoset composite membrane structure.

View Article and Find Full Text PDF

Realizing precise ion separation in polyamide nanofiltration membranes via stage control reactions.

Sci Adv

August 2025

Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.

Thin-film composite nanofiltration membranes face a trade-off phenomenon between ion selectivity and permeability due to the structural constraints of single monomers during interfacial polymerization (IP). Inspired by homogeneous precipitation, we decouple disorderly competitive reactions of comonomers through using in situ-generated H during ultrafast IP processes as equilibrium-shifting inducers for the enamine reaction, thereby regulating the reaction sequence and relative amount of primary/secondary amine monomers. Combining the structural advantage of polyethyleneimine and piperazine monomers, the separation layer had a large free volume, high-density homogeneity, well-tuned nanopores, and tailored charge distribution.

View Article and Find Full Text PDF

Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy.

View Article and Find Full Text PDF