Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Thin-film composite nanofiltration membranes face a trade-off phenomenon between ion selectivity and permeability due to the structural constraints of single monomers during interfacial polymerization (IP). Inspired by homogeneous precipitation, we decouple disorderly competitive reactions of comonomers through using in situ-generated H during ultrafast IP processes as equilibrium-shifting inducers for the enamine reaction, thereby regulating the reaction sequence and relative amount of primary/secondary amine monomers. Combining the structural advantage of polyethyleneimine and piperazine monomers, the separation layer had a large free volume, high-density homogeneity, well-tuned nanopores, and tailored charge distribution. The staged-regulated membrane exhibited high water permeance and could even adapt to ion separation in ultrahigh-salt solutions (Mg/Li = 50, 20,000 parts per million), with a notable Mg/Li selectivity improvement of more than 1600% over that of the control, directly mixed dual aqueous monomer-prepared membrane. This stage control strategy for precise nanofiltration membrane synthesis can provide extensive flexibility in modulating the IP process for application-specific membrane structure design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396313 | PMC |
http://dx.doi.org/10.1126/sciadv.ady9938 | DOI Listing |