A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Realizing precise ion separation in polyamide nanofiltration membranes via stage control reactions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thin-film composite nanofiltration membranes face a trade-off phenomenon between ion selectivity and permeability due to the structural constraints of single monomers during interfacial polymerization (IP). Inspired by homogeneous precipitation, we decouple disorderly competitive reactions of comonomers through using in situ-generated H during ultrafast IP processes as equilibrium-shifting inducers for the enamine reaction, thereby regulating the reaction sequence and relative amount of primary/secondary amine monomers. Combining the structural advantage of polyethyleneimine and piperazine monomers, the separation layer had a large free volume, high-density homogeneity, well-tuned nanopores, and tailored charge distribution. The staged-regulated membrane exhibited high water permeance and could even adapt to ion separation in ultrahigh-salt solutions (Mg/Li = 50, 20,000 parts per million), with a notable Mg/Li selectivity improvement of more than 1600% over that of the control, directly mixed dual aqueous monomer-prepared membrane. This stage control strategy for precise nanofiltration membrane synthesis can provide extensive flexibility in modulating the IP process for application-specific membrane structure design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396313PMC
http://dx.doi.org/10.1126/sciadv.ady9938DOI Listing

Publication Analysis

Top Keywords

ion separation
8
nanofiltration membranes
8
stage control
8
realizing precise
4
precise ion
4
separation polyamide
4
polyamide nanofiltration
4
membranes stage
4
control reactions
4
reactions thin-film
4

Similar Publications