98%
921
2 minutes
20
Upcycling plastic wastes into value-added chemicals is a promising approach to put end-of-life plastic wastes back into their ecocycle. As one of the polyesters that is used daily, polyethylene terephthalate (PET) plastic waste is employed here as the model substrate. Herein, a nickel (Ni)-based catalyst was prepared via electrochemically depositing copper (Cu) species on Ni foam (NiCu/NF). The NiCu/NF formed Cu/CuO and Ni/NiO/Ni(OH) core-shell structures before electrolysis and reconstructed into NiOOH and CuOOH/Cu(OH) active species during the ethylene glycol (EG) oxidation. After oxidation, the Cu and Ni species evolved into more reduced species. An indirect mechanism was identified as the main EG oxidation (EGOR) mechanism. In EGOR, NiCu/NF catalyst exhibited an optimal Faradaic efficiency (FE, 95.8%) and yield rate (0.70 mmol cm h) for formate production. Also, over 80% FE of formate was achieved when a commercial PET plastic powder hydrolysate was applied. Furthermore, commercial PET plastic water bottle waste was employed as a substrate for electrocatalytic upcycling, and pure terephthalic acid (TPA) was recovered only after 1 h electrolysis. Lastly, density functional theory (DFT) calculation revealed that the key role of Cu was significantly reducing the Gibbs free-energy barrier (Δ) of EGOR's rate-determining step (RDS), promoting catalysts' dynamic evolution, and facilitating the C-C bond cleavage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002824 | PMC |
http://dx.doi.org/10.1021/acscatal.3c05509 | DOI Listing |
Small
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.
View Article and Find Full Text PDFChemSusChem
September 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, 175005, Himachal Pradesh, India.
Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:
Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.
View Article and Find Full Text PDF