Enhancing the Prediction Power of Polygenic Risk Scores in Genetically Diverse Coronary Heart Disease.

Circ Genom Precis Med

Université Paris Cité, Paris-Cardiovascular Research Center, Institut National de la Sante et de la Recherche Medicale, France.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.124.004610DOI Listing

Publication Analysis

Top Keywords

enhancing prediction
4
prediction power
4
power polygenic
4
polygenic risk
4
risk scores
4
scores genetically
4
genetically diverse
4
diverse coronary
4
coronary heart
4
heart disease
4

Similar Publications

Treating neurological disorders is challenging due to the blood-brain barrier (BBB), which limits therapeutic agents, including proteins and peptides, from entering the central nervous system. Despite their potential, the BBB's selective permeability is a significant obstacle. This review explores recent advancements in protein therapeutics for BBB-targeted delivery and highlights computational tools.

View Article and Find Full Text PDF

TRIM39 reinforces E2-ESR1 signaling through SUMOylation of ESR1 to hinder the progression of aortic dissection.

Atherosclerosis

September 2025

Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei Province, 434020, China. Electronic address:

Background And Aims: Aortic dissection (AD) is one of the most dangerous and tricky diseases in the field of cardiovascular surgery, severely affecting public health. Recent studies have found that SUMOylation is linked to the pathogenesis of cardiovascular diseases. However, we know very little about the molecular mechanisms of SUMOylation in AD.

View Article and Find Full Text PDF

Applications of Federated Large Language Model for Adverse Drug Reactions Prediction: Scoping Review.

J Med Internet Res

September 2025

Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.

Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.

Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.

View Article and Find Full Text PDF

Background: The rapid advancement of next-generation sequencing has significantly expanded the landscape of precision medicine. However, health care professionals face increasing challenges in keeping pace with the growing body of oncological knowledge and integrating it effectively into clinical workflows. Precision oncology decision support (PODS) tools aim to assist clinicians in navigating this complexity, yet their current functionalities only partially address clinical needs.

View Article and Find Full Text PDF

Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.

View Article and Find Full Text PDF