98%
921
2 minutes
20
Background: This study aimed to develop and validate a machine learning (ML)-based fusion model to preoperatively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using multiparametric magnetic resonance imaging (MRI).
Methods: A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting (XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clinical utility.
Results: Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external validation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification accuracy than the clinical model.
Conclusions: The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996101 | PMC |
http://dx.doi.org/10.1186/s12885-024-12026-x | DOI Listing |
Diabetologia
September 2025
Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
This review article, developed by the EASD Global Council, addresses the growing global challenges in diabetes research and care, highlighting the rising prevalence of diabetes, the increasing complexity of its management and the need for a coordinated international response. With regard to research, disparities in funding and infrastructure between high-income countries and low- and middle-income countries (LMICs) are discussed. The under-representation of LMIC populations in clinical trials, challenges in conducting large-scale research projects, and the ethical and legal complexities of artificial intelligence integration are also considered as specific issues.
View Article and Find Full Text PDFJ Pediatr Orthop
October 2025
Department of Research, Gillette Children's, Saint Paul.
Background: Many children with cerebral palsy (CP) undergo orthopaedic surgery. Prospective studies exploring patient or psychological factors predictive of pain recovery or chronicity have not been investigated in CP and orthopaedic surgery. In studies with other pediatric clinical samples, preoperative pain, anxiety, and catastrophizing were shown to be predictive of pain outcomes.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.