98%
921
2 minutes
20
Objectives: To enhance the daily training quality of athletes without inducing significant physiological fatigue, aiming to achieve a balance between training efficiency and load.
Design Methods: Firstly, we developed an activity classification training model using the random forest algorithm and introduced the "effective training rate" (the ratio of effective activity time to total time) as a metric for assessing athlete training efficiency. Secondly, a method for rating athlete training load was established, involving qualitative and quantitative analyses of physiological fatigue through subjective fatigue scores and heart rate data. Lastly, an optimization system for training efficiency and load balance, utilizing multiple inertial sensors, was created. Athlete states were categorized into nine types based on the training load and efficiency ratings, with corresponding management recommendations provided.
Results: Overall, this study, combining a sports activity recognition model with a physiological fatigue assessment model, has developed a training efficiency and load balance optimization system with excellent performance. The results indicate that the prediction accuracy of the sports activity recognition model is as high as 94.70%. Additionally, the physiological fatigue assessment model, utilizing average relative heart rate and average RPE score as evaluation metrics, demonstrates a good overall fit, validating the feasibility of this model.
Conclusions: This study, based on relative heart rate and wearable devices to monitor athlete physiological fatigue, has developed a balanced optimization system for training efficiency and load. It provides a reference for athletes' physical health and fatigue levels, offering corresponding management recommendations for coaches and relevant professionals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990899 | PMC |
http://dx.doi.org/10.1016/j.pmedr.2024.102710 | DOI Listing |
Biochem Biophys Res Commun
August 2025
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz
Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.
View Article and Find Full Text PDFBrief Bioinform
September 2025
College of Computing and Data Science, Nanyang Technological University, 639798, Singapore.
Protein phosphorylation regulates protein function and cellular signaling pathways, and is strongly associated with diseases, including neurodegenerative disorders and cancer. Phosphorylation plays a critical role in regulating protein activity and cellular signaling by modulating protein-protein interactions (PPIs). It alters binding affinities and interaction networks, thereby influencing biological processes and maintaining cellular homeostasis.
View Article and Find Full Text PDFBrief Bioinform
September 2025
Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing 101408, P. R. China.
With the rapid development of genomic sequencing technologies, there is an increasing demand for efficient and accurate sequence analysis methods. However, existing methods face challenges in handling long, variable-length sequences and large-scale datasets. To address these issues, we propose a novel encoding method-Energy Entropy Vector (EEV).
View Article and Find Full Text PDFOrg Lett
September 2025
Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
Halogenated phenazines hold promise as antimicrobial and antibiofilm agents, yet are mainly accessed via chemical synthesis. Herein, we report PezW, a novel single-component flavin-dependent halogenase (FDH) that halogenates phenazine scaffolds, notably enabling enzymatic synthesis of bioactive 2-bromo-1-hydroxyphenazine () and 2,4-bromo-1-hydroxyphenazine (). Structural modeling and mutagenesis revealed key residues critical for substrate binding and catalysis.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, India.
The miniaturization of separation platforms marks a transformative shift in analytical science, merging microfabrication, automation, and intelligent data integration to meet rising demands for portability, sustainability, and precision. This review critically synthesizes recent technological advances reshaping the field-from microinjection and preconcentration modules to compact, high-sensitivity detection systems including ultraviolet-visible (UV/Vis), fluorescence (FL), electrochemical detection (ECD), and mass spectrometry (MS). The integration of microcontrollers, AI-enhanced calibration routines, and IoT-enabled feedback loops has led to the rise of self-regulating analytical devices capable of real-time decision-making and autonomous operation.
View Article and Find Full Text PDF