98%
921
2 minutes
20
The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987521 | PMC |
http://dx.doi.org/10.1038/s41467-024-47188-6 | DOI Listing |
Adv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFmSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Regulating the differentiation of implanted stem cells into neurons is crucial for stem cell therapy of traumatic brain injury (TBI). However, due to the migratory nature of implanted stem cells, precise and targeted regulation of their fate remains challenging. Here, neural stem cells (NSCs) are bio-orthogonally engineered with hyaluronic acid methacryloyl (HAMA) microsatellites capable of sustained release of differentiation modulators for targeted regulation of their neuronal differentiation and advanced TBI repair.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China.
Chemotherapy is often hindered by systemic toxicity and poor selectivity. To address these issues, we develop an enzyme-responsive metallopeptide hydrogel (HY-Pd) that integrates enzyme-instructed self-assembly (EISA) and bioorthogonal catalysis for selective tumor-targeted prodrug activation. Upon exposure to alkaline phosphatase (ALP), which is overexpressed in osteosarcoma cells (Saos-2), HY-Pd selectively accumulates and self-assembles into catalytic nanofibers.
View Article and Find Full Text PDF