Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: Rhizome (AM) has been used to treat hyperlipidemia for centuries, but its functional components and mechanisms are not clear. This research aimed to investigate the active components in AM and the mechanisms that underlie its anti-hyperlipidemia effect.

Methods: SD rats were fed a high-sucrose high-fat diet in conjunction with alcohol (HSHFDAC) along with different AM extracts (AMW, AMO, AME, and AMP) for 4 weeks. AM's active components were analyzed using multiple databases, and their mechanisms were explored through network pharmacology. The relationship between AM's effect of enhancing serum HDL-c and regulating the expression of reverse cholesterol transport (RCT)-related proteins (Apo-A1, LCAT, and SR-BI) was further validated in the HSHFDAC-induced hyperlipidemic rats. The kidney and liver functions of the rats were measured to evaluate the safety of AM.

Results: AMO, mainly comprised of volatile and liposoluble components, contributed the most significant anti-hyperlipidemia effect among the four extracts obtained from AM, significantly improving the blood lipid profile. Network pharmacology analysis also suggested that volatile and liposoluble components, comprise AM's main active components and they might act on signaling pathways associated with elevated HDL-c. Validation experiments found that AMO substantially and dose-dependently increased HDL-c levels, upregulated the expression of Apo-A1, SR-BI, and LCAT, improved the pathological changes in the kidney and liver, and significantly reduced the serum creatinine levels in rats with hyperlipidemia.

Conclusion: The main anti-hyperlipidemia active components of AM are its volatile and liposoluble components, which may enhance serum HDL-c by increasing the expression of the RCT-related proteins Apo-A1, LCAT, and SR-BI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979170PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28019DOI Listing

Publication Analysis

Top Keywords

active components
16
volatile liposoluble
12
liposoluble components
12
reverse cholesterol
8
components
8
components mechanisms
8
network pharmacology
8
serum hdl-c
8
rct-related proteins
8
proteins apo-a1
8

Similar Publications

Semaphorin 3A-mediated perineuronal nets formation incubates depressive-like behaviors in male mice via activating parvalbumin-expressing interneurons.

Mol Psychiatry

September 2025

Department of Pharmacology, School of Basic Medicine and Department of Pharmacy, Tongji Hospital, Tongji Medical College; and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. chenjg@hu

Dysfunction of parvalbumin-expressing interneurons (PV-INs) in the cerebral cortex has been implicated in major depressive disorder. Perineuronal nets (PNNs), which encapsulate PV-INs, are considered to influence the structural and functional properties of PV-INs. Semaphorin 3A (Sema3A) is a secreted protein constituent of PNNs, but the specific roles of Sema3A in modulating PV-INs during stress remain unknown.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF

The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.

View Article and Find Full Text PDF