Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With its substantial theoretical capacity, silicon (Si) is a prospective anode material for high-energy-density lithium-ion batteries (LIBs). However, the challenges of a substantial volume expansion and inferior conductivity in Si-based anodes restrict the electrochemical stability. To address this, a yolk-shell-structured Si-carbon composite, featuring adjustable void sizes, was synthesized using tin (Sn) as a template. A uniform coating of tin oxide (SnO) on the surface of nano-Si particles was achieved through a simple annealing process. This approach enables the removal of the template with concentrated hydrochloric acid (HCl) instead of hydrofluoric acid (HF), thereby reducing toxicity and corrosiveness. The conductivity of Si@void@Carbon (Si@void@C) was further enhanced by using a high-conductivity carbon layer derived from pitch. By incorporating an internal void, this yolk-shell structure effectively enhanced the low Li/electron conductivity and accommodated the large volume change of Si. Si@void@C demonstrated an excellent electrochemical performance, retaining a discharge capacity of 735.3 mAh g after 100 cycles at 1.0 A g. Even at a high current density of 2.0 A g, Si@void@C still maintained a discharge capacity of 1238.5 mAh g.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976018PMC
http://dx.doi.org/10.3390/molecules29061301DOI Listing

Publication Analysis

Top Keywords

discharge capacity
8
simple safe
4
safe synthesis
4
synthesis yolk-shell-structured
4
yolk-shell-structured silicon/carbon
4
silicon/carbon composites
4
composites enhanced
4
enhanced electrochemical
4
electrochemical properties
4
properties substantial
4

Similar Publications

The rational design of electrode materials with outstanding energy and power density for supercapacitors (SCc) and high-performance electrocatalysts in alkaline media plays an indispensable role in the application of energy storage and overall water splitting. In this paper, we prepared NiCoFe layered ternary hydroxides (LTH) using a hydrothermal synthesis method. The sample with a Ni/Co/Fe ratio of 1:2:0.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF