Geniposide reduced oxidative stress-induced apoptosis in HK-2 cell through PI3K/AKT3/FOXO1 by m6A modification.

Int Immunopharmacol

Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exogenous hydrogen peroxide (HO) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on HO-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 μmol/L HO, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the HO apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111820DOI Listing

Publication Analysis

Top Keywords

m6a methylation
12
m6a
11
m6a modification
8
oxidative stress
8
hk-2 cells
8
m6a rna
8
cell cycle
8
methyltransferase activity
8
activity m6a
8
apoptosis
6

Similar Publications

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine, and pseudouridine, serve as pivotal regulators of gene expression with significant implications for human health and disease. These dynamic modifications influence RNA stability, splicing, translation, and interactions, thereby orchestrating critical biological processes such as embryonic development, immune response, and cellular homeostasis. Dysregulation of RNA modifications is closely associated with a variety of pathologies.

View Article and Find Full Text PDF

Objective: This study aims to investigate the potential of electroacupuncture to mitigate myocardial ischemia-reperfusion injury (MIRI) by influencing N6-methyladenosine (m6A) methylation through modulation of the fat mass and obesity-associated protein (FTO).

Methods: An experimental murine model of MIRI was established by surgically occluding the left anterior descending coronary artery, followed by reperfusion. Electroacupuncture treatment targeting Neiguan acupoints was administered 7 days before ischemia induction.

View Article and Find Full Text PDF

This dataset focuses on N6-Methyladenosine (m6A) RNA methylation in papillary thyroid carcinoma (PTC) without autoimmune thyroid disease (AITD). Emerging evidence suggests that m6A modification was associated with the occurrence and progression of both thyroid carcinoma and AITD. Given the substantial clinical overlap between thyroid carcinoma (particularly PTC) and AITD, rigorous exclusion of autoimmune confounding factors is essential to isolate the distinct role of m6A modifications in driving thyroid carcinogenesis and progression.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF