98%
921
2 minutes
20
Cellulose nanofibrils (CNF) isolation based on a catalyst-free maleic anhydride esterification has proven to be effective, however, the effects of pulp hornification on CNF isolation by this strategy have yet to be explored, which could present significant impacts for CNF isolation. Herein, dried northern bleached softwood Kraft pulp (D-NBSK) and never-dried northern bleached softwood Kraft pulp (ND-NBSK) were selected as the substrates. After esterification with maleic anhydride (MA), the esterified ND-NBSK pulp (E-ND) shows a significantly smaller size and more fragmented structure than the esterified D-NBSK pulp (E-D). Meanwhile, higher degree of esterification can be realized for the never dried pulp as compared to the dried pulp, which is corroborated by the significantly stronger characteristic peaks of CO (1720 cm) and -COO (1575 cm) from the FTIR spectra and the higher surface charge content (0.86 ± 0.04 mmol/g vs. 0.55 ± 0.05 mmol/g). A comparison of the characteristics of the resulting CNF similarly demonstrated the negative impact of hornification. Overall, this work indicates that hornification tends to reduce the accessibility of chemical reagents to the pulp, leading to insufficient deconstruction. Such negative impact of hornification should be considered when performing nanocellulose isolation, especially when using pulp as feedstock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.121961 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Organic and Inorganic Chemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil. Electronic address:
Kraft lignin (KL) is a byproduct of the pulp and paper industry and has been extensively used in several high-value-added applications. The aim of this study was to evaluate the potential of phosphorylated Kraft lignins obtained by different reaction conditions (e.g.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Cavitation and Mechanochemistry Lab, Department of Chemical Engineering & Process Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
Alkaline pretreatment is the most widely employed chemical process for lignocellulosic biomass, particularly at an industrial scale. However, this method generates a significant volume of complex wastewater, which contains recalcitrant organic molecules, high concentrations of biopolymers, and hazardous chemicals. These waste streams have been largely overlooked, with conventional disposal methods, such as incineration in recovery boilers, posing serious environmental and resource inefficiency concerns.
View Article and Find Full Text PDFPolymers (Basel)
July 2025
Innovation Institute in Ecomaterials, Ecoprodcuts and Ecoenergies, Biomass-Based (I2E3), Biochemistry, Chemistry, Physics and Forensic Science Department, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead.
View Article and Find Full Text PDFChemosphere
September 2025
Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil. Electronic addres
Many fish have been used annually to evaluate chemical hazards to aquatic environments; thus, cell-based methods, such as the RTgill-W1 and ZFL cell line assays, have been proposed as alternatives to provide information on acute toxicity to fish, mostly in screening approaches and as part of a weight of evidence (WoE) approach. These methods have been developed using soluble chemicals, which can pose challenges for testing novel types of chemicals, such as nanomaterials. Cellulose nanofiber (CNF) kraft-bleached pulp, chitosan nanoparticles (CS-NP), and silica nanoparticles (SiO-NP) were evaluated regarding their toxicity to fish cells using the RTgill-W1 and ZFL cell line assays (in vitro).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
This study investigates the sustainable upgrading of bleached kraft pulp (BKP) from softwood into dissolving-grade alpha-cellulose through a series of individual treatments: alkaline extraction, hydrothermal processing (hot water and steam), and organic solvent exposure (TFA, NMMO, and DMAc). This study aimed to evaluate and compare the effectiveness of these methods in enhancing alpha-cellulose purity while maintaining fiber integrity and reactivity. Alkaline extraction was conducted using sodium hydroxide at concentrations of 8 %, 10 %, and 12 % at varying temperatures (25-60 °C).
View Article and Find Full Text PDF