Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5' -7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939236PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299779PLOS

Publication Analysis

Top Keywords

jun mrna
16
jun translation
16
jun
14
mrna translation
12
translation regulation
12
translation
10
start codon
8
translation jun
8
transcription factor
8
jun utr
8

Similar Publications

This dataset focuses on N6-Methyladenosine (m6A) RNA methylation in papillary thyroid carcinoma (PTC) without autoimmune thyroid disease (AITD). Emerging evidence suggests that m6A modification was associated with the occurrence and progression of both thyroid carcinoma and AITD. Given the substantial clinical overlap between thyroid carcinoma (particularly PTC) and AITD, rigorous exclusion of autoimmune confounding factors is essential to isolate the distinct role of m6A modifications in driving thyroid carcinogenesis and progression.

View Article and Find Full Text PDF

Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.

Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.

Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.

View Article and Find Full Text PDF

Postmenopausal women's estrogen decline is a key factor for cardiovascular disease (CVD). Phytoestrogen may prevent CVD by protecting vascular endothelium and inhibiting vascular smooth muscle proliferation via receptor's genomic or nongenomic pathways, yet effective estrogen receptor α (ERα)-targeting phytoestrogens need further exploration. Molecular docking and thermal shift assay were used to verify compound binding to ERα.

View Article and Find Full Text PDF

Research Question: How does the microRNA (miRNA)-mRNA regulatory network in polycystic ovary syndrome (PCOS) with insulin resistance (PCOS-IR) manifest, based on miRNA sequencing of follicular fluid-derived extracellular vesicles and mRNA sequencing of granulosa cells from clinical patients?

Design: Follicular fluid and granulosa cells were collected from patients with PCOS-IR and PCOS and healthy controls. Differentially expressed miRNA (DEmiR) and differentially expressed mRNA (DEmRNA) among the three groups were identified and analysed using high-throughput sequencing. DEmiR expression was validated by quantitative real-time (qRT)-PCR.

View Article and Find Full Text PDF

This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model.

View Article and Find Full Text PDF