Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-03872-1DOI Listing

Publication Analysis

Top Keywords

bactericidal activities
8
trans-translation system
8
klebsiella pneumoniae
8
antibiotic combination
8
combination tobramycin/ciprofloxacin
8
tmrna deletion
8
etbr uptake
8
uptake presence
8
activities
5
trans-translation
5

Similar Publications

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination.

Beilstein J Nanotechnol

August 2025

Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.

To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.

View Article and Find Full Text PDF

Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) that mediates chemotaxis and bactericidal activities in phagocytes. The monoclonal antibody 5F1 is generated against full-length FPR1 and used widely for detection of FPR1 expression. This study aimed to characterize 5F1 for its functions.

View Article and Find Full Text PDF

Leprosy, induced by , and in some cases, , remains an important public health issue in endemic regions despite ongoing elimination efforts. Histoid Hansen's disease, a variant of lepromatous leprosy, is characterised by shiny, well-defined nodules and a heavy acid-fast bacillary load. We present a case of a 50-year-old male agricultural worker from rural central India presenting during a community health camp with multiple cutaneous nodules clinically suggestive of histoid leprosy.

View Article and Find Full Text PDF

Background And Aim: Antibiotic resistance poses a growing threat to wound management in veterinary medicine. Blue light phototherapy has emerged as a non-antibiotic bactericidal alternative with additional benefits for wound healing. However, its effectiveness in clinical veterinary contexts remains inadequately explored.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF