98%
921
2 minutes
20
NaFe(PO)(PO) is regarded as a promising cathode material for sodium-ion batteries due to its affordability, non-toxic nature, and excellent structural stability. However, its electrochemical performance is hampered by its poor electronic conductivity. Meanwhile, most of the previous studies utilized spray-drying and sol-gel methods to synthesize NaFe(PO)(PO), and the large-scale synthesis of the cathode material is still challenging. This study presents a composite cathode material, NaFeAl(PO)(PO)/C, prepared via a straightforward ball-milling technique. By substituting Al minimally into the Fe site of NFPP, Fe defects are introduced into the structure, hindering the formation of NaFePO and thereby enhancing Na-ion diffusion kinetics and conductivity. Additionally, the average length of AlO bonds (2.18 Å) is slightly smaller than that of FeO bonds (2.19 Å), contributing to the superior structural stability. The smaller ionic radii of Al induce lattice contraction, further enhancing the structural stability. Moreover, the surface of material particles is coated with a thin layer of carbon, ensuring excellent electrical conductivity and outstanding structure stability. As a result, the NaFeAl(PO)(PO)/C cathode exhibits excellent electrochemical performance, leading to high discharge capacity (128.1 mAh g at 0.2 C), outstanding rate performance (98.1 mAh g at 10 C), and long cycle stability (83.7 % capacity retention after 3000 cycles at 10 C). This study demonstrates a low-cost, ultra-stable, and high-rate cathode material prepared by simple mechanical activation for sodium-ion batteries which has application prospects for large-scale production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.03.036 | DOI Listing |
Anal Chem
September 2025
Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore.
Solid-contact ion-selective electrodes often struggle with potential stability during and between measurements. The potential drift significantly limits the reliability of the signal readout of ion-selective electrodes (ISEs), thereby limiting their practical applications. In this work, preadding a solution with the primary ion into the ion-selective membrane cocktail before drop-casting the ISEs was used to investigate the nature of ISEs' potential stability.
View Article and Find Full Text PDFJ Org Chem
September 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
A novel electrochemical/Fe dual-catalyzed perfluoroalkylation-thiolization of alkenes under mild conditions has been developed. This protocol utilizes commercially available reagents, cheap electrodes, and simple equipment. Diverse polyfunctionalized perfluoroalkyl-substituted derivatives were successfully obtained in a direct and efficient way with a broad substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.
View Article and Find Full Text PDFDiscov Nano
September 2025
RRU 709, Department of Clinical Pharmacology, Advanced Centre for Training, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.
View Article and Find Full Text PDF