A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain. | LitMetric

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain.

PLoS Comput Biol

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here, we introduce EFMouse, a toolbox that extends previous approaches to model intracranial electric fields and generate predictions that can be tested with in-vivo recordings in mice. Novel functionality includes the ability to capture typical surgical approaches in the mouse (e.g., cranial recording windows), the placement of stimulation electrodes anywhere in or on the animal, and novel ways to report field predictions, including some refined measures of focality and direction homogeneity, and quantification based on regions defined in the Allen Mouse Brain Atlas. Although the EFMouse toolbox is generally applicable to planning and designing tES studies in mice, we illustrate its use by posing questions about transcranial direct current stimulation (tDCS) experiments with the goal of targeting the left visual cortex of the mouse. The EFMouse toolbox is publicly available at https://github.com/klabhub/EFMouse.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1013471DOI Listing

Publication Analysis

Top Keywords

efmouse toolbox
16
animal models
12
electric fields
8
mouse brain
8
animal
5
efmouse
4
toolbox model
4
model stimulation-induced
4
stimulation-induced electric
4
mouse
4

Similar Publications