A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nickel foam supported Mn-doped NiFe-LDH nanosheet arrays as efficient bifunctional electrocatalysts for methanol oxidation and hydrogen evolution. | LitMetric

Nickel foam supported Mn-doped NiFe-LDH nanosheet arrays as efficient bifunctional electrocatalysts for methanol oxidation and hydrogen evolution.

J Colloid Interface Sci

School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China; State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China. Electronic ad

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemical upgrading methanol into value-added formate at the anode in alkaline media enables the boosting production of hydrogen fuel at the cathode with saved energy. To achieve such a cost-effective and efficient electrocatalytic process, herein this work presents a Mn-doped nickel iron layered double hydroxides supported on nickel foam, derived from a simple hydrothermal synthesis. This developed electrocatalyst could act as an efficient bifunctional electrocatalyst for methanol-to-formate with a high faradaic efficiency of nearly 100 %, and for hydrogen evolution reaction, at an external potential of 1.5 V versus reversible hydrogen electrode. Additionally, a current density of 131.1 mA cm with a decay of merely 12.2 % over 120 h continuous long-term testing was generated in co-electrocatalysis of water/methanol solution. Further density functional theoretical calculations were used to unravel the methanol-to-formate reaction mechanism arising from the doping of Fe and/or Mn. This work offers a good example of co-electrocatalysis to produce formate and green hydrogen fuel using a bifunctional electrocatalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.191DOI Listing

Publication Analysis

Top Keywords

nickel foam
8
efficient bifunctional
8
hydrogen evolution
8
hydrogen fuel
8
bifunctional electrocatalyst
8
hydrogen
5
foam supported
4
supported mn-doped
4
mn-doped nife-ldh
4
nife-ldh nanosheet
4

Similar Publications