98%
921
2 minutes
20
Sulfur hexafluoride (SF) is a potent greenhouse gas. Here we use long-term atmospheric observations to determine SF emissions from China between 2011 and 2021, which are used to evaluate the Chinese national SF emission inventory and to better understand the global SF budget. SF emissions in China substantially increased from 2.6 (2.3-2.7, 68% uncertainty) Gg yr in 2011 to 5.1 (4.8-5.4) Gg yr in 2021. The increase from China is larger than the global total emissions rise, implying that it has offset falling emissions from other countries. Emissions in the less-populated western regions of China, which have potentially not been well quantified in previous measurement-based estimates, contribute significantly to the national SF emissions, likely due to substantial power generation and transmission in that area. The CO-eq emissions of SF in China in 2021 were 125 (117-132) million tonnes (Mt), comparable to the national total CO emissions of several countries such as the Netherlands or Nigeria. The increasing SF emissions offset some of the CO reductions achieved through transitioning to renewable energy in the power industry, and might hinder progress towards achieving China's goal of carbon neutrality by 2060 if no concrete control measures are implemented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915133 | PMC |
http://dx.doi.org/10.1038/s41467-024-46084-3 | DOI Listing |
J Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFChem Asian J
September 2025
School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China.
Organic high-temperature photothermal materials (T > 100 °C) have demonstrated significant application values because of their ability to exceed the temperature limits of traditional organic photothermal materials, enabling spatiotemporally controllable long-distance heating and high-temperature conversion of laser or sunlight. In this review, we summarize the recent progress in organic high-temperature photothermal materials, mainly including organic small molecule and polymer materials. Their photothermal conversion mechanisms and the factors influencing their performance as well as their applications, including photo controlled ignition/deflagration, photothermal induced actuators, photo controlled metal processing, and concentrated sunlight energy conversion were elaborated.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFChemistry
September 2025
International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, imposing significant social and economic burdens globally. Despite extensive efforts have been devoted to developing fluorescent probes for Aβ imaging, further improving the luminescent efficiency of prevailing probes still remains a significant challenge. Herein, we investigated the inner mechanism of constructing high-efficient Aβ probes via a structural cyclization strategy.
View Article and Find Full Text PDF