Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteoarthritis (OA) is a chronic inflammatory joint disease characterized by progressive cartilage degeneration, synovitis, and osteoid formation. In order to effectively treat OA, it is important to block the harmful feedback caused by reactive oxygen species (ROS) produced during joint wear. To address this challenge, we have developed injectable nanocomposite hydrogels composed of polygallate-Mn (PGA-Mn) nanoparticles, oxidized sodium alginate, and gelatin. The inclusion of PGA-Mn not only enhances the mechanical strength of the biohydrogel through a Schiff base reaction with gelatin but also ensures efficient ROS scavenging ability. Importantly, the nanocomposite hydrogel exhibits excellent biocompatibility, allowing it to effectively remove ROS from chondrocytes and reduce the expression of inflammatory factors within the joint. Additionally, the hygroscopic properties of the hydrogel contribute to reduced intra-articular friction and promote the production of cartilage-related proteins, supporting cartilage synthesis. In vivo experiments involving the injection of nanocomposite hydrogels into rat knee joints with an OA model have demonstrated successful reduction of osteophyte formation and protection of cartilage from wear, highlighting the therapeutic potential of this approach for treating OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909650PMC
http://dx.doi.org/10.1016/j.mtbio.2024.100993DOI Listing

Publication Analysis

Top Keywords

nanocomposite hydrogels
12
injectable nanocomposite
8
hydrogels enhanced
4
enhanced lubrication
4
lubrication antioxidant
4
antioxidant properties
4
properties treatment
4
treatment osteoarthritis
4
osteoarthritis osteoarthritis
4
osteoarthritis chronic
4

Similar Publications

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

A Diselenide-Based Triple-Responsive Nanogel for Tumor Chemo-Photoimmunotherapy.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.

In this study, we successfully developed a diselenide-based, triple-responsive intelligent nanogel, IR780@BEAP, for lung cancer therapy. Exploiting the elevated levels of reactive oxygen species (ROS) and glutathione (GSH) in the tumor microenvironment (TME), a ROS/GSH dual-responsive diselenide cross-linker (DSe5) was synthesized and used to cross-link betulin (BE) with polysaccharide (AP) while coloading the photosensitizer IR780. The resulting nanogel, IR780@BEAP, exhibited an appropriate particle size (137.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

The application of nanoscale metal-organic frameworks (MOFs) in tissue engineering is receiving increased attention. As three-dimensional scaffolding materials that provide an appropriate extracellular microenvironment supporting the survival, proliferation, and organization of cells play a key role tissue engineering, hybridization of nanoscale MOFs with bulk hydrogels has led to the development of nanoscale MOF-combined hydrogels. However, development of nanoscale MOF-combined hydrogel scaffolds remains challenging.

View Article and Find Full Text PDF

Correction for 'Harnessing the polymer-particle duality of ultra-soft nanogels to stabilise smart emulsions' by Alexander V. Petrunin , , 2023, , 2810-2820, https://doi.org/10.

View Article and Find Full Text PDF