98%
921
2 minutes
20
Leguminous plants provide carbon to symbiotic rhizobia in root nodules to fuel the energy-consuming process of nitrogen fixation. The carbon investment pattern from the acquired sources is crucial for shaping the growth regime of the host plants. The autoregulation of nodulation (AON) signaling pathway tightly regulates the number of nodules that form. AON disruption leads to excessive nodule formation and stunted shoot growth. However, the physiological role of AON in adjusting the carbon investment pattern is unknown. Here, we show that AON plays an important role in sustaining shoot water availability, which is essential for promoting carbon investment in shoot growth in Lotus japonicus. We found that AON-defective mutants exhibit substantial accumulation of nonstructural carbohydrates, such as sucrose. Consistent with this metabolic signature, resilience against water-deficit stress was enhanced in the shoots of the AON-defective mutants. Furthermore, the water uptake ability was attenuated in the AON-defective mutants, likely due to the increased ratio of nodulation zone, which is covered with hydrophobic surfaces, on the roots. These results increase our physiological understanding of legume-rhizobia symbiosis by revealing a trade-off between root nodule formation and shoot water availability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae126 | DOI Listing |
Pestic Biochem Physiol
November 2025
National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
Department of Plant Physiology, University of Granada, Granada, Spain. Electronic address:
Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, National Center for Soybean Improvement, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Key Laboratory for Biology and Genetic Improvement o
Soybean is an important source of oil, protein, and feed. However, its yield is far below that of major cereal crops. The green revolution increased the yield of cereal crops partially through high-density planting of lodging-resistant semi-dwarf varieties, but required more nitrogen fertilizers, posing an environmental threat.
View Article and Find Full Text PDFNew Phytol
September 2025
Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
In symbiotic plant-microbe interactions, the host invests considerable amounts of resources in the microbial partner. If the microbe does not reciprocate with a comparable symbiotic benefit, it is regarded as a cheater. The host responds to cheaters with negative feedback mechanisms (sanctions) to prevent fitness deficits resulting from being exploited.
View Article and Find Full Text PDFMetastasis is the leading cause of cancer related deaths, however therapies specifically targeting metastasis are lacking and remain a dire therapeutic need in the clinic. Metastasis is a highly inefficient process that is inhibited by extracellular stress. Therefore, metastasizing cells that ultimately survive and successfully colonize distant organs must undergo molecular rewiring to mitigate stress.
View Article and Find Full Text PDF