Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wearable robots are increasingly being deployed for use in industrial fields. However, only a few studies have focused on the usability of wearable robots. The present study evaluated the factors affecting the usability of a harness in securing a wearable robot to the body because the harness directly affects the work efficiency, and thus its design and use require careful consideration. A comparative evaluation of the arrangement of the Vest Exoskeleton before and after improvements was conducted, in which participants performed a benchmark assembly task while wearing the robot. Results showed that wearability decreased after the improvements due to the additional straps and buckles used, but the overall wearing satisfaction improved as a result of increased stability. Stability and convenience were the main factors affecting the overall wearing satisfaction, while sub-indicators included wearing comfort and tactile sensation. Therefore, improvements in stability, such as those related to fixation strength and tactile sensation, had a direct positive impact on the overall wearing satisfaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906295PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26518DOI Listing

Publication Analysis

Top Keywords

wearable robots
12
wearing satisfaction
12
tactile sensation
8
wearing
5
determinants wearer
4
satisfaction
4
wearer satisfaction
4
satisfaction factors
4
factors harnesses
4
harnesses upper-limb
4

Similar Publications

Single Te Nanoribbon for Disrupting Conventional Sensitivity-Power Limits of Flexible Strain Sensors.

Small

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.

Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Interpretable Semi-federated Learning for Multimodal Cardiac Imaging and Risk Stratification: A Privacy-Preserving Framework.

J Imaging Inform Med

September 2025

Heart Center, Department of Geriatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

The growing heterogeneity of cardiac patient data from hospitals and wearables necessitates predictive models that are tailored, comprehensible, and safeguard privacy. This study introduces PerFed-Cardio, a lightweight and interpretable semi-federated learning (Semi-FL) system for real-time cardiovascular risk stratification utilizing multimodal data, including cardiac imaging, physiological signals, and electronic health records (EHR). In contrast to conventional federated learning, where all clients engage uniformly, our methodology employs a personalized Semi-FL approach that enables high-capacity nodes (e.

View Article and Find Full Text PDF

Integrated Pneumatic-Auxiliary Sensing Array for Real-Time Elbow Joint Kinematics Tracking and Anomaly Prevention.

ACS Appl Mater Interfaces

September 2025

The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.

Flexible sensors integrating motion detection and tactile perception capabilities demonstrate significant potential in aerospace biomechanics and medical rehabilitation. Here, we report a biomimetic inflatable chamber sensor that synergistically integrates pneumatic-auxiliary and electronic sensing for elbow joint health monitoring. The device architecture combines multiwalled carbon nanotube-reinforced silicone composites with embedded electrode arrays integrated within the inner lining of inflatable chambers, achieving high sensitivity while maintaining signal stability under electromagnetic interference.

View Article and Find Full Text PDF

MEMS and NEMS increasingly integrate multiple functions within compact platforms, enabled by piezoelectric and ferroelectric materials such as PZT, BaTiO, AlN, ScAlN, PVDF, and HfZrO. These materials support devices including mechanical sensors, RF resonators for gas detection, energy harvesters, non-volatile memories such as FeRAM and FeFETs, and neuromorphic computing arrays, as well as microspeakers and microphones for compact audio interfaces. They also play a key role in reconfigurable photonic components through acousto-optic and electro-optic modulation.

View Article and Find Full Text PDF

Evaluation of the HAL® lumbar type exoskeleton in long-term care: protocol for a mixed-methods feasibility study.

Front Digit Health

August 2025

Department of Internal Medicine, Faculty of Medicine, University Medicine Halle (Saale), Health Service Research Working Group | Acute Care, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Background: Lower back pain (LBP) is one of the most common occupational health issues among healthcare professionals, particularly in long-term care settings. The HAL® Lumbar Type Exoskeleton is a wearable assistive technology designed to reduce strain on the lower back during physically demanding care activities. However, evidence regarding its feasibility, usability, and acceptance in real-world long-term care settings remains limited.

View Article and Find Full Text PDF