Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1. The interaction between FBF-2 and CSN-5 can be detected in vivo by proximity ligation. csn-5 mutation results in the destabilization of FBF proteins, which may explain previously observed decrease in the numbers of germline stem and progenitor cells, and disruption of oogenesis. The loss of csn-5 does not decrease the levels of a related PUF protein PUF-3, and csn-5(lf) phenotype is not enhanced by fbf-1/2 knockdown, suggesting that the effect is specific to FBFs. The effect of csn-5 on oogenesis is largely independent of the COP9 signalosome and is cell autonomous. Surprisingly, the regulation of FBF protein levels involves a combination of COP9-dependent and COP9-independent mechanisms differentially affecting FBF-1 and FBF-2. This work supports a previously unappreciated role for CSN-5 in the stabilization of germline stem cell regulatory proteins FBF-1 and FBF-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075551PMC
http://dx.doi.org/10.1093/genetics/iyae033DOI Listing

Publication Analysis

Top Keywords

fbf-1 fbf-2
16
germline stem
16
cop9 signalosome
12
proteins fbf-1
12
csn-5
8
caenorhabditis elegans
8
stem progenitor
8
progenitor cells
8
stem cell
8
fbf protein
8

Similar Publications

PUF proteins (named for Pumilio and mRNA binding factor or FBF) are a family of RNA-binding proteins. FBF is a collective term for two PUF proteins, FBF-1 and FBF-2, that maintain germline stem cells. FBF binds the 3'UTR of target RNAs and together with partner proteins represses translation of mRNAs that promote differentiation.

View Article and Find Full Text PDF

RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1.

View Article and Find Full Text PDF

Sows exhibit metabolic syndrome and significant changes in intestinal microbiota during late gestation and lactation, affecting sow performance and piglet health. Dietary fiber (DF) is widely applied to improve sow performance by modulating gut microbiota and their by-products. Here, 60 sows were randomly allocated to groups, including CON (8% wheat bran), FBF-1 (1% fermented bamboo fiber), FBF-2 (2.

View Article and Find Full Text PDF

Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities toward the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation.

View Article and Find Full Text PDF

Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in .

Front Cell Dev Biol

February 2020

Division of Biological Sciences, University of Montana, Missoula, MT, United States.

Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al.

View Article and Find Full Text PDF