Suppressing Halide Segregation via Pyridine-Derivative Isomers Enables Efficient 1.68 eV Bandgap Perovskite Solar Cells.

Adv Mater

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light-induced phase segregation is one of the main issues restricting the efficiency and stability of wide-bandgap perovskite solar cells (WBG PSCs). Small organic molecules with abundant functional groups can passivate various defects, and therefore suppress the ionic migration channels for phase segregation. Herein, a series of pyridine-derivative isomers containing amino and carboxyl are applied to modify the perovskite surface. The amino, carboxyl, and N-terminal of pyridine in all of these molecules can interact with undercoordinated Pb through coordination bonds and suppress halide ions migration via hydrogen bonding. Among them, the 5-amino-3-pyridine carboxyl acid (APA-3) treated devices win the champion performance, enabling an efficiency of 22.35% (certified 22.17%) using the 1.68 eV perovskite, which represents one of the highest values for WBG-PSCs. This is believed to be due to the more symmetric spatial distribution of the three functional groups of APA-3, which provides a better passivation effect independent of the molecular arrangement orientation. Therefore, the APA-3 passivated perovskite shows the slightest halide segregation, the lowest defect density, and the least nonradiative recombination. Moreover, the APA-3 passivated device retains 90% of the initial efficiency after 985 h of operation at the maximum power point, representing the robust durability of WBG-PSCs under working conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202311923DOI Listing

Publication Analysis

Top Keywords

halide segregation
8
pyridine-derivative isomers
8
perovskite solar
8
solar cells
8
phase segregation
8
functional groups
8
amino carboxyl
8
apa-3 passivated
8
perovskite
5
suppressing halide
4

Similar Publications

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

Mixed-halide perovskites of formula MAPb(BrI), where MA is methylammonium, are of great interest for optoelectronic applications (particularly high-efficiency solar cells) due to their finely tunable bandgap, which enables precise control over light absorption. However, their stability remains a critical challenge, notably due to reversible photoinduced halide segregation. Under continuous illumination, this process leads to the formation of Br- and I-rich domains, which lower device performance by introducing low-bandgap regions that trap charge carriers.

View Article and Find Full Text PDF

Wide-bandgap (WBG) perovskite solar cells (PSCs) can exceed the Shockley-Queisser limit in tandem solar cells (TSCs), but phase segregation under continuous illumination limits their stability. Using in-situ microscopic characterizations, we investigate the dynamics of photon-induced phase segregation. Initial light soaking drives iodide diffusion into a metastable state, but continued redistribution increases the phase separation energy barrier, resulting in a more stable, segregation-resistant state.

View Article and Find Full Text PDF

Narrowband photodetectors with precise spectral control offer significant potential for applications such as color imaging and machine vision. However, existing demonstrations have encountered challenges due to restricted absorption, the need for additional filters, or the inclusion of thick absorbing layers to facilitate charge collection filtering mechanisms. These constraints have resulted in suboptimal detectivity, inadequate color control, or slow response.

View Article and Find Full Text PDF

Imprisoning 2H intermediate phases in blade-coated wide-bandgap perovskites for efficient all-perovskite tandem solar cells.

Sci Adv

August 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Scalable fabrication of high-efficiency all-perovskite tandem solar cells (TSCs) remains challenging due to notable voltage deficits in wide-bandgap perovskite solar cells, primarily driven by severe halide segregation during the large-scale blade coating process. Here, we introduce 4-aminobenzylphosphonic acid as a functional "2H-imprison" additive that selectively bypasses the formation of the 2H phase (an iodine-rich structure) and promotes the direct crystallization of the desired 3C phase, resulting in a homogeneous phase and halide distribution. Consequently, blade-coated 1.

View Article and Find Full Text PDF