98%
921
2 minutes
20
The rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion's polarizability and mass-to-charge ratio (/) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934814 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c01491 | DOI Listing |
J Chem Phys
September 2025
Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.
This study investigates the stereodynamical control of the H + HBr (v = 0, j = 1) reaction within 0.01-1.50 eV collision energy using the time-dependent wave packet method.
View Article and Find Full Text PDFCurr Res Food Sci
August 2025
Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany.
A- and B-type procyanidins (PCs) are widely known for their health-promoting properties, such as antioxidant activity. The limited availability of reference substances represents a major challenge, resulting in a low number of systematic studies on their health benefits. In our study, the optimised 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-induced oxidation of the B-types B1 and B2 was carried out yielding the corresponding A-types A1 (1) and A2 (2), which have an additional ether bridge between C2--C7, whereas oxidation of B3 and B4 produced a six-membered spirocyclic ring system including a spiro-carbon atom at C8t (3-5).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Clemson University, Department of Chemistry, Clemson, South Carolina 29634, United States.
Ion mobility-mass spectrometry has shown tremendous potential for improving the analysis of various subclasses of steroids. Its speed and ability to separate isobaric and isomeric species makes it ideal for biomedical, clinical, food, environmental, and antidoping analyses. But while other high-resolution ion mobility (HRIM) techniques have begun to see increased use in steroidomics, Structures for Lossless Ion Manipulations (SLIM) is a relative newcomer to the field.
View Article and Find Full Text PDFAnal Chem
August 2025
Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China.
Collision cross section (CCS) is a crucial parameter in ion mobility-mass spectrometry, which plays a significant role in enhancing the precision of compound annotation. Computational prediction methods aim to infer the CCS value from molecular structure and have become a common strategy for efficiently building large-scale CCS compound databases. However, most of the current available methods deliver suboptimal predictive performance due to limited high-quality training data sets and inadequate model architectures for handling multimodal features.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Wisconsin-Madison, Madison, Wisconsin, USA.
The first search for a heavy neutral spin-1 gauge boson (Z^{'}) with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at sqrt[s]=13 TeV, collected from 2016 to 2018 with the CMS experiment and corresponding to an integrated luminosity of 138 fb^{-1}. The data are consistent with the standard model predictions.
View Article and Find Full Text PDF