Lnc-PLCB1 is stabilized by METTL14 induced m6A modification and inhibits Helicobacter pylori mediated gastric cancer by destabilizing DDX21.

Cancer Lett

Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Helicobacter pylori (H. pylori) infection is considered to be an important factor in gastric cancer (GC). Long noncoding RNA (lncRNA) and m6A modification are involved in the occurrence and development of GC, but the role of lncRNA m6A modification in the development of GC mediated by H. pylori is still unclear. Here, we found that H. pylori infection downregulated the expression of lnc-PLCB1 through METTL14-mediated m6A modification and IRF2-mediated transcriptional regulation. Overexpression of lnc-PLCB1 inhibited the proliferation and migration of GC cells, while downregulation of lnc-PLCB1 promoted the proliferation and migration ability of GC cells. In addition, clinical analysis showed that lnc-PLCB1 is lower in GC tissues than in normal tissues. Further study found that lnc-PLCB1 reduced the protein stability of its binding protein DEAD-box helicase 21 (DDX21) and then downregulated the expression of CCND1 and Slug, thereby playing tumour suppressing role in the occurrence and development of GC. In conclusion, the METTL14/lnc-PLCB1/DDX21 axis plays an important role in H. pylori-mediated GC, and lnc-PLCB1 can be used as a new target for GC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.216746DOI Listing

Publication Analysis

Top Keywords

m6a modification
16
helicobacter pylori
8
gastric cancer
8
pylori infection
8
lncrna m6a
8
occurrence development
8
downregulated expression
8
proliferation migration
8
lnc-plcb1
7
pylori
5

Similar Publications

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Huopu Xialing Decoction Mitigates Influenza A-Induced Pulmonary Injury by inhibiting METTL3-Nlrp3(m6A) Mediated NLRP3 Inflammasome Activation.

J Ethnopharmacol

September 2025

School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of

Ethnopharmacological Relevance: Huopu Xialing Decoction (HXD) is a traditional Chinese medicine (TCM) formula widely used in the clinical treatment of respiratory viral infections. Despite its established application, the pharmacological mechanisms underlying its therapeutic effects against influenza remain to be fully elucidated.

Aim Of The Study: This study aimed to investigate the protective effects of HXD against influenza A virus-induced lung inflammation and to explore the role of gut microbiota and epigenetic regulation in mediating these effects.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF