98%
921
2 minutes
20
Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171098 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Orthopedics I, Second Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.
Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.
View Article and Find Full Text PDFAnalyst
September 2025
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
Polystyrene nanoparticles (PS-NPs) are prevalent environmental contaminants that can accumulate in biological tissues. This study investigates the effects of PS-NPs on TM4 cells, a Sertoli cell line crucial for maintaining the male spermatogenesis microenvironment.TM4 cells were exposed to PS-NPs (0-100 μg/mL) duration of 24 to 72 h.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.
View Article and Find Full Text PDF