98%
921
2 minutes
20
The process of wound healing in the dental pulp is characterized by intricate interplay of signalling cascades, cellular responses, and extracellular matrix (ECM). The objective of this research was to examine the intricate interaction between signalling cascades, cellular responses, and extracellular matrix (ECM) dynamics that comprise the wound healing process of dental pulp. We conducted a controlled laboratory analysis of transcriptomic landscape of dental pulp tissues, including both healthy and inflamed samples, utilizing single-cell RNA sequencing. We identified significant change in cellular composition under carious conditions by analysing samples from 50 patients. Specifically, the proportion of immune cells increased from 25% to 40%, while the proportion of fibroblasts decreased from 20% to 10%. A transition towards ECM remodelling and fibrosis was indicated by this change. In addition, substantial increase inexpression of critical genes including COL1A1, FN1, IL-1B, IL-6 and TNC was detected, indicating that the extracellular matrix (ECM) was actively remodelled and that a robust inflammatory response was present, both of which are vital for tissue repair. Increased cell-cell interactions among B cells, plasma cells, macrophages and MSCs, and fibroblasts were highlighted in our study, demonstrating the intricate cellular dynamics that occur in response to dental pulp injury. The knowledge gained regarding the cellular and molecular processes underlying pulp wound healing contributed to the advancement of knowledge regarding pulp pathology and regeneration. Moreover, it established a foundation for creation of targeted therapeutic interventions that seek to maximize pulp repair and regeneration. This study represented noteworthy achievement in the field of dental surgery, establishing a solid groundwork for subsequent investigations into regenerative medicine, wound healing, and dental tissue restoration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883240 | PMC |
http://dx.doi.org/10.1111/iwj.14804 | DOI Listing |
Stem Cell Rev Rep
September 2025
Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4C, Martin, 036 01, Slovakia.
Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
Int Endod J
September 2025
Department of Endodontics, Advanced Educational Program in Endodontics, Health Information and Business Systems (HIBS), School of Dentistry, UAB|the University of Alabama at Birmingham, Birmingham, Alabama, USA.
Introduction: Accurate diagnosis of pulpal health is crucial to identify the most effective therapeutic approach. However, differentiating pulpal conditions, which may require different treatment approaches, remains a challenge. This study aimed to address this gap by investigating the protein levels of 17 inflammatory biomarkers simultaneously in the dental pulp with different clinical diagnoses.
View Article and Find Full Text PDFStem Cells Int
August 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
Dental mesenchymal stem cells (MSCs) play an essential role in the development of immature permanent teeth. Bacterial infection of the pulp and periapical tissues of immature permanent teeth, the associated oral pathogens, and their virulence factors affect the viability, proliferation, differentiation, and cytokine secretion of MSCs. Bacteria and virulence factors can also trigger an inflammatory response that induces pro-inflammatory cytokine secretion and destroys odontogenic MSCs in the pulp and periapical region, negatively affecting the development of immature permanent teeth.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.
View Article and Find Full Text PDF