Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contaminants of emerging concern (CEC) contain a wide range of compounds, such as pharmaceutical waste, pesticides, herbicides, industrial chemicals, organic dyes, etc. Their presence in the surrounding has extensive and multifaceted effects on human health as they have the potential to persist in the environment, accumulate in biota, and disrupt ecosystems. In this regard, various remediation methods involving different kind of functional nanomaterials with unique properties have been developed. The functional nanomaterials can provide several mechanisms for water pollutant removal, such as adsorption, catalysis, and disinfection, in a single platform. Graphene oxide (GO) is a two-dimensional carbon-based material that has an extremely large surface area and a large number of active sites. Recent advances in synthesising GO have shown great progress in tailoring its various physiochemical, optical, surface, structural properties etc., making it better adsorbent and photocatalysts. In this review, sole adsorbent and standalone photocatalytic performances of GO for the removal of CEC have been discussed in light of tailoring its adsorption and photocatalytic properties through novel synthesis routes and optimizing synthesis parameters. This review also examines various models describing the structure of GO and its surface/structural modifications for improved adsorption and photocatalytic properties. The article provides valuable information for the production of efficient and cost-effective GO-based sole adsorbents and photocatalysts as compared to the traditional materials. Furthermore, future prospective and challenges for sole GO nanostructures to compete with traditional adsorbents and photocatalysts have been discussed providing interesting avenues for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141483DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
sole adsorbent
8
functional nanomaterials
8
adsorption photocatalytic
8
photocatalytic properties
8
adsorbents photocatalysts
8
properties
5
oxide emerging
4
sole
4
emerging sole
4

Similar Publications

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF

The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.

View Article and Find Full Text PDF

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF