Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Previous studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN).

Methods: BALB/c mice aged 6-8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α. In a small-scale ( = 3/group) experiment, mice immunized IM with electroporation were followed up for serum antibody concentrations over a period of 1 year and for bronchoalveolar antibody levels at the termination of the study. Following IN immunization with unencapsulated plasmid DNA ( = 6/group), mice were evaluated at 11 weeks for serum antibody concentrations, quantities of T cells in the lungs, and IFN-γ- and TNF-α-expressing antigen-specific T cells in the lungs and spleen.

Results: At 12 months postprimary vaccination, recipients of the IM vaccine incorporating MIP-3α had significantly, approximately threefold, higher serum antibody concentrations than recipients of the vaccine not incorporating MIP-3α. The area-under-the-curve analyses of the 12-month observation interval demonstrated significantly greater antibody concentrations over time in recipients of the MIP-3α vaccine formulation. At 12 months postprimary immunization, only recipients of the fusion vaccine had concentrations of serum-neutralizing activity deemed to be effective. After intranasal immunization, only recipients of the MIP-3α vaccine formulations developed T-cell responses in the lungs significantly above those of PBS controls. Low levels of serum antibody responses were obtained following IN immunization.

Conclusion: Although requiring separate IM and IN immunizations for optimal immunization, incorporating MIP-3α in a SARS-CoV-2 vaccine construct demonstrated the potential of a stable and easily produced vaccine formulation to provide the extended antibody and T-cell responses that may be required for protection in the setting of emerging SARS-CoV-2 variants. Without electroporation, simple, uncoated plasmid DNA incorporating MIP-3α administered intranasally elicited lung T-cell responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870766PMC
http://dx.doi.org/10.3389/fimmu.2024.1292059DOI Listing

Publication Analysis

Top Keywords

t-cell responses
20
incorporating mip-3α
20
serum antibody
16
antibody concentrations
16
vaccine
12
lung t-cell
12
mip-3α
10
antibody
9
fused chemokine
8
chemokine mip-3α
8

Similar Publications

Purpose: Urosepsis, a condition caused by a urinary tract infection spreading to the bloodstream, has a complex epigenetic behavior in its cellular and molecular pathophysiology. The objective of this study was to identify relevant genes and signaling pathways in adult urosepsis through a bioinformatic analysis of differentially expressed genes (DEGs).

Materials And Methods: In this in-silico study, the GSE69528 dataset, containing 138 total RNA blood samples from patients with sepsis and uninfected controls, was obtained from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

Radiotherapy (RT) is a key component of comprehensive cancer treatment regimens; nevertheless, its concomitant immunosuppression may diminish therapeutic efficacy. In this study, we developed an injectable hydrogel system for the local delivery of PROteolysis TArgeting Chimeras (PROTACs), achieved by loading tumor cell membrane-fused liposome nanoparticles to enhance the anti-tumor effect. The system targeted Bromodomain-containing protein 4 (BRD4), and combined treatment with RT promoted DNA damage, reduced DNA repair and decreased tumor cell proliferation and survival.

View Article and Find Full Text PDF

NK cells limit the synergistic anti-tumor effect of PD-1 inhibition and βγ-biased IL-2.

Int J Biol Macromol

September 2025

Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell The

Despite its potential as a cancer immunotherapy, wild-type IL-2 is limited by dose-limiting toxicities, including vascular leak syndrome, and its strong activation of regulatory T cells (Tregs), which dampens anti-tumor immunity. These drawbacks are largely driven by IL-2's binding to IL-2Rα, and avoiding this interaction can reduce IL-2-associated toxicities, although it cannot completely eliminate them. To overcome these limitations, βγ-biased IL-2 variants (Non-α-IL-2) have been developed to selectively activate effector T and NK cells.

View Article and Find Full Text PDF