Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We developed a highly efficient, ultra-sensitive, and selective dual detection sensor for hypochlorite (ClO) and sulfite (SO) ions based on surface-enhanced Raman scattering (SERS) spectroscopy. 3,3',5,5'-Tetramethylbenzidine (TMB) is oxidized by ClO under acidic conditions to diazotized oxTMB that, when electrostatically adsorbed onto Au nanoparticles (NPs), produces a strong Raman signal at 1605 cm. Meanwhile, oxTMB is reduced to TMB by SO, which significantly reduces the Raman signal. The linear detection range of the proposed sensor is 10 to 10 M with a detection limit of 59 pM for ClO and 10 to 10 M with a detection limit of 5.4 nM for SO. In addition, the sensor was successfully applied to detect ClO and SO in water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124051DOI Listing

Publication Analysis

Top Keywords

dual detection
8
sulfite ions
8
sers spectroscopy
8
raman signal
8
detection limit
8
detection quantification
4
quantification hypochlorite
4
hypochlorite sulfite
4
ions sers
4
spectroscopy utilizing
4

Similar Publications

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

Aim: Hepatitis C virus (HCV) infection remains a global health concern. Although the World Health Organization (WHO) proposed a strategy to eliminate HCV by 2030, Japan faces challenges owing to limited access and insufficient support for high-risk populations. Previously, HCV diagnoses required a two-step process, delaying results and increasing costs.

View Article and Find Full Text PDF

Multilayered Sandwich Structure Sensor: Confinement-Mediated HO Enrichment Strategy for Ultrasensitive and Long-term Stable Prostate Cancer Biomarker Detection.

Small

September 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.

Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.

View Article and Find Full Text PDF

Optically Controlled Memristor Enabling Synergistic Sensing-Memory-Computing for Neuromorphic Vision Systems.

Adv Mater

September 2025

Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.

Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.

View Article and Find Full Text PDF

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF