98%
921
2 minutes
20
The increasing demand for large-scale energy storage propels the development of lithium-ion batteries with high energy and high power density. Low tortuosity electrodes with aligned straight channels have proved to be effective in building such batteries. However, manufacturing such low tortuosity electrodes in large scale remains extremely challenging. In contrast, high-performance electrodes with customized gradients of materials and porosity are possible to be made by industrial roll-to-roll coating process. Yet, the desired design of gradients combining materials and porosity is unclear for high-performance gradient electrodes. Here, triple gradient LiFePO electrodes (TGE) are fabricated featuring distribution modulation of active material, conductive agent, and porosity by combining suction filtration with the phase inversion method. The effects and mechanism of active material, conductive agent, and porosity distribution on electrode performance are analyzed by experiments. It is found that the electrode with a gradual increase of active material content from current collector to separator coupled with the distribution of conductive agent and porosity in the opposite direction, demonstrates the best rate capability, the fastest electrochemical reaction kinetics, and the highest utilization of active material. This work provides valuable insights into the design of gradient electrodes with high performance and high potential in application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311044 | DOI Listing |
BMC Geriatr
September 2025
Department of Neurobiology, Care Sciences and Society, Division of Nursing, Karolinska Institutet, Stockholm, Sweden.
Background: The benefits of physical activity for frail older acutely hospitalized adults are becoming increasingly clear. To enhance opportunities for physical activity on geriatric wards, it is essential to understand the older adult's perspective.
Aim: The aim of the study was to explore the experiences and perceptions of physical activity among older adults during hospital stays on a geriatric ward.
BMC Neurol
September 2025
Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
Background: Parkinson's disease (PD) is characterized by motor symptoms altering gait domains such as slow walking speed, reduced step and stride length, and increased double support time. Gait disturbances occur in the early, mild to moderate, and advanced stages of the disease in both backward walking (BW) and forward walking (FW), but are more pronounced in BW. At this point, however, no information is available about BW performance and disease stages specified using the Hoehn and Yahr (H&Y) scale.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDF