Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs). Dropwise injection of a lignin solution containing PVA sacrificial templates into liquid nitrogen produces tiny spheres that are lyophilized and carbonized to produce LSPCs. Most of the synthesized samples possess excellent specific surface areas (426.6-790.5 m/g) along with hierarchical micro- and mesoporous morphologies. When tested in supercapacitor applications, LSPC-28 demonstrates a superior specific capacitance of 102.3 F/g at 0.5 A/g, excellent rate capability with 70.3% capacitance retention at 20 A/g, and a commendable energy density of 2.1 Wh/kg at 250 W/kg. These materials (LSPC-46) also show promising performance as an anode material in sodium-ion batteries with high reversible capacity (110 mAh g at 100 mA g), high Coulombic efficiency, and excellent cycling stability. This novel and green technique is anticipated to facilitate the scalability of lignin-based porous carbons and open a range of research opportunities for energy storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865442PMC
http://dx.doi.org/10.1021/acssuschemeng.3c07202DOI Listing

Publication Analysis

Top Keywords

porous carbons
16
energy storage
12
storage applications
12
porous
5
synthesis sustainable
4
sustainable lignin
4
lignin precursors
4
precursors hierarchical
4
hierarchical porous
4
carbons
4

Similar Publications

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF

MOF-engineered activated carbon adsorbent enabling semi-selective ethyl carbamate removal in fermented foods.

Food Res Int

November 2025

Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Solid-state Brewing, Luzhou Laojiao Co. Ltd, Luzhou 646000, China; Key Laboratory of Monitoring and Assessm

Fermented foods are valued for their diverse flavor and health benefits, but the formation of ethyl carbamate (EC), a potential carcinogen, during production and storage poses challenges. Current EC reduction methods often compromise flavor and bioactive components. This study exemplifies a novel adsorbent combining activated carbon with metal-organic framework (MOF) chemistry for semi-selective EC removal.

View Article and Find Full Text PDF

Additive Manufactured Programmable Scaffold Sensor Based on Triply Periodic Minimal Surfaces for Broad-Spectrum Pressure Detection.

ACS Appl Mater Interfaces

September 2025

DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.

Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.

View Article and Find Full Text PDF

Gravitational and Magnetic Bi-Field Assisted One-Step Quick Fabrication of Implantable Micro Zn-Ion Hybrid Supercapacitor.

Adv Healthc Mater

September 2025

Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.

The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.

View Article and Find Full Text PDF