98%
921
2 minutes
20
Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs). Dropwise injection of a lignin solution containing PVA sacrificial templates into liquid nitrogen produces tiny spheres that are lyophilized and carbonized to produce LSPCs. Most of the synthesized samples possess excellent specific surface areas (426.6-790.5 m/g) along with hierarchical micro- and mesoporous morphologies. When tested in supercapacitor applications, LSPC-28 demonstrates a superior specific capacitance of 102.3 F/g at 0.5 A/g, excellent rate capability with 70.3% capacitance retention at 20 A/g, and a commendable energy density of 2.1 Wh/kg at 250 W/kg. These materials (LSPC-46) also show promising performance as an anode material in sodium-ion batteries with high reversible capacity (110 mAh g at 100 mA g), high Coulombic efficiency, and excellent cycling stability. This novel and green technique is anticipated to facilitate the scalability of lignin-based porous carbons and open a range of research opportunities for energy storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865442 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.3c07202 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Instituto de Cerámica y Vidrio (ICV-CSIC), C/Kelsen 5, 28049 Madrid, Spain.
The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.
Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.
View Article and Find Full Text PDFFood Res Int
November 2025
Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Solid-state Brewing, Luzhou Laojiao Co. Ltd, Luzhou 646000, China; Key Laboratory of Monitoring and Assessm
Fermented foods are valued for their diverse flavor and health benefits, but the formation of ethyl carbamate (EC), a potential carcinogen, during production and storage poses challenges. Current EC reduction methods often compromise flavor and bioactive components. This study exemplifies a novel adsorbent combining activated carbon with metal-organic framework (MOF) chemistry for semi-selective EC removal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDF