98%
921
2 minutes
20
As a potential candidate for grid-scale energy storage technology, aqueous Zn-ion batteries (ZIBs) have attracted considerable attention due to their intrinsic safety, environmental friendliness, and ease of fabrication. Nevertheless, the road to industry for this technique is hindered by serious issues, including undesired side reactions, random growth of the Zn dendrites, electrode passivation, and anode corrosion, which are associated with the high reactivity of water molecules during the electrochemical reactions. These challenges are strongly dependent on electrolyte solvation chemistry (ESC), which subsequently determines the electrochemical behavior of the metal ions and water molecules on the electrode surface. In this work, a comprehensive understanding of optimized ESC with specified functional groups on the mixing agents to stabilize the Zn anode is provided. First, the challenges facing the ZIBs and their chemical principles are outlined. Specific attention is paid to the working principles of the mixing agents with different functional groups. Then the recent progress is summarized and compared. Finally, perspectives on future research for the aqueous Zn batteries are presented from the point of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311407 | DOI Listing |
J Phys Chem Lett
September 2025
College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.
Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.
Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.
View Article and Find Full Text PDF