Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The evolving field of photocatalysis requires the development of new functional materials, particularly those suitable for large-scale commercial systems. One particularly promising approach is the creation of hybrid organic/inorganic materials. Despite being extensively studied, materials such as polydopamine (PDA) and titanium oxide continue to show significant promise for use in such applications. Nitrogen-doped titanium oxide and free-standing PDA films obtained at the air/water interface are particularly interesting. This study introduces a straightforward and reproducible approach for synthesizing a novel class of large-scale multilayer nanocomposites. The method involves the alternate layering of high-quality materials at the air/water interface combined with precise atomic layer deposition techniques, resulting in a gradient nitrogen doping of titanium oxide layers with exceptionally sharp oxide/polymer interfaces. The analysis confirmed the presence of nitrogen in the interstitial and substitutional sites of the TiO lattice while maintaining the 2D-like structure of the PDA films. These chemical and structural characteristics translate into a reduction of the band gap by over 0.63 eV and an increase in the photogenerated current by over 60% compared with pure amorphous TiO. Furthermore, the nanocomposites demonstrate excellent stability during the 1 h continuous photocurrent generation test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910457PMC
http://dx.doi.org/10.1021/acsami.3c18935DOI Listing

Publication Analysis

Top Keywords

titanium oxide
12
multilayer nanocomposites
8
exceptionally sharp
8
nitrogen doping
8
pda films
8
air/water interface
8
tio/pda multilayer
4
nanocomposites exceptionally
4
sharp large-scale
4
large-scale interfaces
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

Titanium is widely used for dental implant abutments due to its mechanical strength, biocompatibility, and corrosion resistance; however, its gray coloration can compromise esthetic outcomes, particularly in patients with thin or translucent gingival biotypes. Anodization, a surface modification technique altering the titanium oxide layer, has been proposed to improve soft tissue aesthetics by producing abutments with warmer tones (eg, pink or gold) that harmonize with the surrounding gingiva. This systematic review aimed to evaluate the clinical and aesthetic outcomes of anodized titanium abutments compared to non-anodized titanium and other materials, with a focus on peri-implant soft tissue health and visual integration.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.

View Article and Find Full Text PDF