Publications by authors named "Pawel Piotr Michalowski"

The MXene family has rapidly expanded since its discovery in 2011 to include nearly 50 unique MXenes, not accounting for solid solutions and diverse surface terminations. However, a question raised since their discovery has been: What is the effect of ? In other words, how does the number of layers affect the MXene properties? To date, no direct study of the impact of has been conducted due to the lack of isoelemental MXene compositions spanning more than two values. Herein, we report on a system of three MXenes with identical M-site chemistries, (MoV)CT ( = 1, 2, and 3), allowing for the study of MXene structure-property relationships across , for the first time.

View Article and Find Full Text PDF

MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision.

View Article and Find Full Text PDF
Article Synopsis
  • - Transition metal carbides, particularly their 2D forms called MXenes, are being used in energy storage and extreme environments, but the role of alkali cations in their production and application is not fully understood.
  • - The study investigates how alkali cations occupy transition metal vacancy sites in TiCT and MoTiCT MXenes, affecting their structural stability and phase transitions, using various advanced techniques like high-temperature x-ray diffraction and electron microscopy.
  • - The findings provide insights into cation interactions at the atomic level, which can enhance MXenes' stability and potential applications, marking progress in the understanding of phase-property relationships in ceramics.
View Article and Find Full Text PDF

The evolving field of photocatalysis requires the development of new functional materials, particularly those suitable for large-scale commercial systems. One particularly promising approach is the creation of hybrid organic/inorganic materials. Despite being extensively studied, materials such as polydopamine (PDA) and titanium oxide continue to show significant promise for use in such applications.

View Article and Find Full Text PDF
Article Synopsis
  • Refractory metal nitrides are attractive for photonics due to their low cost, durability, and compatibility with silicon technology, outperforming traditional plasmonic materials.
  • By adjusting the composition of these nitrides, researchers can effectively control both static and rapid optical responses, with specific emphasis on changes related to the epsilon-near-zero (ENZ) region.
  • The study identifies three key time components in the optical response dynamics—femtosecond, picosecond, and nanosecond—while highlighting the significance of electron-phonon interactions and temperature effects on the material's optical properties.
View Article and Find Full Text PDF

In this paper, we present the results of research on the physicochemical properties of two selected faces of the struvite crystal, which is the main component of infectious urinary stones. Two main faces, (001) and ([Formula: see text]), ending the c-axis, were selected for the study. These faces are not related by symmetry relations, which means, among other things, that they should have a different atomic structure, which was confirmed experimentally.

View Article and Find Full Text PDF

A quaternary lattice matched InAlGaN barrier layer with am indium content of 16.5 ± 0.2% and thickness of 9 nm was developed for high electron mobility transistor structures using the metalorganic chemical-vapor deposition method.

View Article and Find Full Text PDF

Ohmic contacts on p-doped 4H-SiC are essential for the fabrication of a wide range of power electron devices. Despite the fact that Ti/Al based ohmic contacts are routinely used for ohmic contacts on p-doped 4H-SiC, the underlying contact formation mechanisms are still not fully understood. TLM structures were fabricated, measured and analyzed to get a better understanding of the formation mechanism.

View Article and Find Full Text PDF

Titanium nitride is a well-known conductive ceramic material that has recently experienced resumed attention because of its plasmonic properties comparable to metallic gold and silver. Thus, TiN is an attractive alternative for modern and future photonic applications that require compatibility with the Complementary Metal-Oxide-Semiconductor (CMOS) technology or improved resistance to temperatures or radiation. This work demonstrates that polycrystalline TiN films sputtered on silicon at room temperature can exhibit plasmonic properties continuously from 400 nm up to 30 μm.

View Article and Find Full Text PDF

The presented protocol combines excellent detection limits (1 ppm to 1 ppb) using secondary ion mass spectrometry (SIMS) with reasonable spatial resolution (~1 µm). Furthermore, it describes how to obtain realistic three-dimensional (3D) distributions of segregated impurities/dopants in solid state materials. Direct 3D depth profile reconstruction is often difficult to achieve due to SIMS-related measurement artifacts.

View Article and Find Full Text PDF

We show that it is possible to engineer magnetic multidomain configurations without domain walls in a prototypical rare-earth-transition-metal ferrimagnet using keV He^{+} ion bombardment. We additionally show that these patterns display a particularly stable magnetic configuration due to a deep minimum in the energy of the system caused by flux closure and a corresponding reduction of the magnetostatic energy without an increase in energy by exchange and anisotropy terms across the walls. This occurs because light-ion bombardment affects an element's relative contribution to the properties of the ferrimagnet differently.

View Article and Find Full Text PDF

A method of growing highly oriented MoS is presented. First, a Mo film is deposited on a graphene/SiC(0001) substrate and the subsequent annealing of it at 750 °C leads to intercalation of Mo underneath the graphene layer, which is confirmed by secondary ion mass spectrometry (SIMS) measurements. Formation of highly oriented MoS layers is then achieved by sulfurization of the graphene/Mo/SiC system using HS gas.

View Article and Find Full Text PDF

Further development of gallium nitride (GaN) based optoelectronic devices requires in-depth understanding of the defects present in GaN grown on a sapphire substrate. In this work, we present three dimensional secondary ion mass spectrometry (SIMS) detection of oxygen. Distribution of these impurities is not homogeneous and the vast majority of oxygen atoms are agglomerated along pillar-shaped structures.

View Article and Find Full Text PDF

The ion-irradiation damage effects in semiconductors were directly visualized by means of scanning electron microscopy at low beam acceleration voltages (low-kV SEM). The AlGaAs (p-type and n-type) epitaxial layers grown over GaAs substrates were irradiated with energetic He ions with fluencies ranging from 8e12 to 8e13 cm and studied in cross-sectional view after cleavage. Secondary electron images collected at low energy (0.

View Article and Find Full Text PDF

The application of secondary ion mass spectrometry (SIMS) in investigation and comparison of molybdenum disulfide (MoS2) films grown on SiO2, Al2O3 and BN substrates is presented. SIMS measurements of the MoS2/substrate interface reveals oxygen out-diffusion from the substrates containing oxygen and the formation of an amorphous MoOS layer in addition to MoS2. The total area of MoS2 domains covering the substrate is directly related to the type of substrate.

View Article and Find Full Text PDF

The crystallisation of sputter-deposited, amorphous In₂O₃:H films was investigated. The influence of deposition and crystallisation parameters onto crystallinity and electron hall mobility was explored. Significant precipitation of metallic indium was discovered in the crystallised films by electron energy loss spectroscopy.

View Article and Find Full Text PDF

Further development and optimization of modern optoelectronic devices requires fast and reliable procedures that may evaluate the quality of interfaces. For thick multilayer devices, mixing effect may significantly prevent proper interpretation of secondary ion mass spectrometry depth profiles especially if a region of interest is located far from the sample surface. In this work, we present how to overcome this problem with a so-called a-crater-within-a-crater approach.

View Article and Find Full Text PDF

Oxygen release and out-diffusion in zinc oxide crystals during heavy ions bombardment has been suggested by many experimental techniques. In this work we have employed secondary ion mass spectrometry to study ZnO implanted with ytterbium ions. Our measurements confirm formation of an oxygen-depleted layer and oxygen out-diffusion and agglomeration at the surface.

View Article and Find Full Text PDF

Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail.

View Article and Find Full Text PDF

Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 atoms cm) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer.

View Article and Find Full Text PDF

Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior.

View Article and Find Full Text PDF

Secondary ion mass spectrometry is applied to the depth profiling of the superlattice active region of lattice matched (∼9.2 μm) AlInAs/InGaAs/InP quantum cascade lasers. The developed measurement procedure is capable of characterizing the quality of each individual layer in the superlattice region, including layers as thin as 0.

View Article and Find Full Text PDF

The following invention - Graphene Enhanced Secondary Ion Mass Spectrometry - (pending European patent application no. EP 16461554.4) is related to a method of analysing a solid substrate by means of Secondary Ion Mass Spectrometry (SIMS).

View Article and Find Full Text PDF