Micromachines (Basel)
February 2023
Ultra-short 230 fs laser pulses of a 515 nm wavelength were tightly focused onto 700 nm focal spots and utilised in opening ∼0.4-1 μm holes in alumina AlO etch masks with a 20-50 nm thickness. Such dielectric masks simplify the fabrication of photonic crystal (PhC) light-trapping patterns for the above-Lambertian performance of high-efficiency solar cells.
View Article and Find Full Text PDFA quaternary lattice matched InAlGaN barrier layer with am indium content of 16.5 ± 0.2% and thickness of 9 nm was developed for high electron mobility transistor structures using the metalorganic chemical-vapor deposition method.
View Article and Find Full Text PDFCarrier recombination and scattering at the semiconductor boundaries can substantially limit the device efficiency. However, surface and interface recombination is generally neglected in the nitride-based devices. Here, we study carrier recombination and diffusivity in AlGaN/GaN/sapphire heterointerfaces with AlGaN barriers of different quality.
View Article and Find Full Text PDFSpectral dependence of terahertz emission is a sensitive tool to analyze the structure of conduction band of semiconductors. In this work, we investigate the excitation spectra of THz pulses emitted from MOCVD-grown InN and InGaN epitaxial layers with indium content of 16%, 68%, and 80%. In InN and indium-rich InGaN layers we observe a gradual saturation of THz emission efficiency with increasing photon energy.
View Article and Find Full Text PDFIndium nitride has a good potential for infrared optoelectronics, yet it suffers from fast nonradiative recombination, the true origin of which has not been established with certainty. The diffusion length of free carriers at high densities is not well investigated either. Here, we study carrier recombination and diffusion using the light-induced transient grating technique in InN epilayers grown by pulsed MOCVD on c-plane sapphire.
View Article and Find Full Text PDFCarrier dynamics in high-Al-content AlGaN epilayers with different dislocation densities from 5 × 10(8) cm(-2) to 5 × 10(9) cm(-2) is studied by comparing the photoluminescence decay with the decay of carrier density. The carrier density decay was investigated using the light-induced transient grating technique. This comparison shows that the luminescence at the nonequilibrium carrier densities expected in operating light-emitting diodes depends on the recombination of free carriers and the localized exciton-like electron-hole pairs and localization-delocalization processes.
View Article and Find Full Text PDF