98%
921
2 minutes
20
Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual's seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses, especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic intervention or inhibiting the activation of transforming growth factor-β1 (TGF-β1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-β1 pathway may be a new therapeutic target to prevent detrimental sub-FS sequelae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861539 | PMC |
http://dx.doi.org/10.1038/s41420-024-01837-3 | DOI Listing |
Mol Cell Neurosci
September 2025
Department of Personalized & Molecular Medicine, Era University, Lucknow, India.
Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biological Sciences, Southern Methodist University, Dallas, TX.
The leading cause of epilepsy-related mortality is sudden unexpected death in epilepsy (SUDEP), resulting from seizure-induced cardiorespiratory arrest by mechanisms that remain unresolved. Mutations in ion channel genes expressed in both brain and heart represent SUDEP risk factors because they can disrupt neural and cardiac rhythms, providing a unified explanation for seizures and lethal arrhythmias. However, the relative contributions of brain-driven mechanisms, heart-intrinsic processes, and seizures to cardiac dysfunction in epilepsy remain unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang, China.
Aims: Epilepsy affects more than 50 million peolple worldwide and requires reliable seizure detection systems to mitigate risks associated with unpredictable seizures. Existing machine learning frameworks are limited in generalizability, signal fidelity, and clinical translation, particularly when bridging invasive and non-invasive modalities. This study aims to develop a robust and generalizable seizure detection model capable of supporting cross-modal applicability.
View Article and Find Full Text PDFEur J Neurol
September 2025
4BRAIN, Department of Head and Skin, Ghent University, Ghent, Belgium.
Introduction: The locus coeruleus (LC) is a compact nucleus of noradrenergic neurons in the brainstem. Despite its relatively small size, the LC has widespread axonal connections and serves as the primary source of noradrenaline (NA) throughout the central nervous system. The LC-NA system plays a critical role in regulating cognitive and physiological processes, and its dysfunction has been implicated in various neurological and psychiatric disorders.
View Article and Find Full Text PDFNeuroscience
September 2025
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brasil; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK. Electronic address:
Zika virus (ZIKV) infection during gestation causes fetal brain abnormalities such as microcephaly, cortical malformations, and motor defects. Infected infants often develop epilepsy and other neurodevelopmental impairments later in life. Animal models show that ZIKV infection leads to seizures and neuroinflammation, disrupting brain development and function.
View Article and Find Full Text PDF