Design and preparation of fluorescent covalent organic frameworks for biological sensing.

Chem Commun (Camb)

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent organic frameworks (COFs) are a new class of functional solids featuring several fantastic structural characteristics, including a great diversity of building units and cross-linking patterns, precise integration of building blocks, and adjustable topology of porous architecture. In addition to the above features, some COF samples are constructed with high-density conjugated fragments, which have unique potential advantages in fluorescence imaging, and thus may have great potential applications in bioimaging. Herein, this article summarizes the recent progress in the design and preparation of fluorescent covalent organic frameworks. We investigate the systemic correlation between the structural qualities of COF networks and biological sensors. Finally, the significant advantages, major challenges, and future opportunities of fluorescent covalent organic frameworks are discussed for the development of next-generation porous materials for sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc00167bDOI Listing

Publication Analysis

Top Keywords

covalent organic
16
organic frameworks
16
fluorescent covalent
12
design preparation
8
preparation fluorescent
8
covalent
4
organic
4
frameworks
4
frameworks biological
4
biological sensing
4

Similar Publications

Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, CHNO, contains two coplanar mol-ecules ( and ) completely located on mirror planes. In the crystal, N-H⋯O, N-H⋯N, C-H⋯O and C-H⋯N hydrogen bonds link the mol-ecules into sheets parallel to (010). There are neither significant π-π nor C-H⋯π(ring) inter-actions.

View Article and Find Full Text PDF

To highlight the critical role of donor-type functional group in COF photocatalysts for sustainable HO production under natural air and without sacrificial donors, herein, we demonstrated that methoxy-functionalised COFs (TTT-DMTA) outperform hydroxy-functionalised counterparts (TTT-DHTA) for HO production.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF