98%
921
2 minutes
20
Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erae042 | DOI Listing |
Plant Cell Environ
August 2024
Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, Hefei, China.
Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation.
View Article and Find Full Text PDFJ Exp Bot
May 2024
Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China.
Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba).
View Article and Find Full Text PDFHortic Res
September 2023
College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China.
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown.
View Article and Find Full Text PDFPlant Cell Environ
October 2021
College of Horticulture, Anhui Agricultural University, Hefei City, China.
Comprehensively controlling phytoplasma-associated jujube witches' broom (JWB) disease is extremely challenging for the jujube industry. Although the pathogenesis of phytoplasma disease has been highlighted in many plant species, the release of lateral buds from dormancy under JWB phytoplasma infection has not been characterized in woody perennial jujube. Here, two 16SrV-B group phytoplasma effectors, SJP1 and SJP2, were experimentally determined to induce witches' broom with increased lateral branches.
View Article and Find Full Text PDFInt J Biol Macromol
May 2020
College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China.
Three polysaccharides of uniform molecular weight designated as SJP1-1, SJP2-1, and SJP3-1 from Smilacina japonica were studied in this paper. Respectively, their specific optical rotations were -45°, -75°, and -35°, their polysaccharide contents were 89.22%, 93.
View Article and Find Full Text PDF