98%
921
2 minutes
20
Objective: Recent deep learning techniques hold promise to enable IMU-driven kinetic assessment; however, they require large extents of ground reaction force (GRF) data to serve as labels for supervised model training. We thus propose using existing self-supervised learning (SSL) techniques to leverage large IMU datasets to pre-train deep learning models, which can improve the accuracy and data efficiency of IMU-based GRF estimation.
Methods: We performed SSL by masking a random portion of the input IMU data and training a transformer model to reconstruct the masked portion. We systematically compared a series of masking ratios across three pre-training datasets that included real IMU data, synthetic IMU data, or a combination of the two. Finally, we built models that used pre-training and labeled data to estimate GRF during three prediction tasks: overground walking, treadmill walking, and drop landing.
Results: When using the same amount of labeled data, SSL pre-training significantly improved the accuracy of 3-axis GRF estimation during walking compared to baseline models trained by conventional supervised learning. Fine-tuning SSL model with 1-10% of walking data yielded comparable accuracy to training baseline model with 100% of walking data. The optimal masking ratio for SSL is 6.25-12.5%.
Conclusion: SSL leveraged large real and synthetic IMU datasets to increase the accuracy and data efficiency of deep-learning-based GRF estimation, reducing the need for labeled data.
Significance: This work, with its open-source code and models, may unlock broader use cases of IMU-driven kinetic assessment by mitigating the scarcity of GRF measurements in practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461173 | PMC |
http://dx.doi.org/10.1109/TBME.2024.3361888 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Endocr Disord
September 2025
Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef City, 62514, Egypt.
Background: Thyroid nodules (TNs) are frequent and often benign. Accurately differentiating between benign and malignant nodules is crucial for proper management. This research aims to use ultrasonography to examine TNs and identify possible risk factors in order to improve patient outcomes and diagnostic accuracy.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Ren Fail
December 2025
Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
The Grams model, designed to predict adverse event risks in advanced chronic kidney disease (CKD) patients, was evaluated in a Chinese cohort of 1,333 patients with eGFR below 30 mL/min/1.73 m. The model demonstrated moderate to good discrimination across outcomes, performing well in predicting kidney replacement therapy (KRT) but overestimating the risks of cardiovascular disease (CVD) and mortality.
View Article and Find Full Text PDF