Development and validation of a stacking ensemble model for death prediction in the Chinese Longitudinal Healthy Longevity Survey (CLHLS).

Maturitas

Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aimed to develop and validate a mortality risk prediction model for older people based on the Chinese Longitudinal Healthy Longevity Survey using the stacking ensemble strategy.

Material And Methods: A total of 12,769 participants aged 65 or more at baseline were included. Ensemble machine learning models were applied to develop a mortality prediction model. We selected three base learners, including logistic regression, eXtreme Gradient Boosting, and Categorical + Boosting, and used logistic regression as the meta-learner. The primary outcome was five-year survival. Variable importance was evaluated by the SHapley Additive exPlanations method.

Results: The mean age at baseline was 88, and 57.8 % of participants were women. The CatBoost model performed the best among the three base learners, the area under the receiver operating characteristics curve (AUC) reached 0.8469 (95%CI: 0.8345-0.8593), and the stacking ensemble model further improved the discrimination ability (AUC = 0.8486, 95%CI: 0.8367-0.8612, P = 0.046). Conventional logistic regression had comparable performance (AUC = 0.8470, 95 % CI: 0.8346-0.8595). Older age, higher scores for self-care activities of daily living, being male, higher objective physical performance capacity scores, not undertaking housework, and lower scores on the Mini-Mental State Examination contributed to higher risk.

Conclusions: We successfully constructed and validated a few death risk prediction models for a Chinese population of older adults. While the stacking ensemble approach had the best prediction performance, the improvement over conventional logistic regression was insubstantial.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.maturitas.2024.107919DOI Listing

Publication Analysis

Top Keywords

stacking ensemble
16
logistic regression
16
ensemble model
8
chinese longitudinal
8
longitudinal healthy
8
healthy longevity
8
longevity survey
8
risk prediction
8
prediction model
8
three base
8

Similar Publications

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF

Motivation: Heavy usage of synthetic nitrogen fertilizers to satisfy the increasing demands for food has led to severe environmental impacts like decreasing crop yields and eutrophication. One promising alternative is using nitrogen-fixing microorganisms as biofertilizers, which use the nitrogenase enzyme. This could also be achieved by expressing a functional nitrogenase enzyme in the cells of the cereal crops.

View Article and Find Full Text PDF

Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Multimodal Deep Learning for Generating Potential Anti-Dengue Peptides.

ACS Omega

September 2025

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Dengue virus remains a significant global health threat, imposing a substantial disease burden on nearly half of the world's population. The urgent need for effective antiviral therapeutics, including therapeutic peptides targeting the Dengue virus, is critical in the current healthcare landscape. However, the availability of anti-Dengue peptides (ADPs) data remains limited in existing data sets, posing a challenge for computational modeling and discovery.

View Article and Find Full Text PDF