98%
921
2 minutes
20
Biomaterial scaffolds have been widely used in tissue engineering. A functionalized self-assembled peptide scaffold named RADA16-OPD was designed by linking the short functional motif of osteopontine (OPN)-derived functional fragments SVVYGLR (OPD) to the C-terminus of the self-assembled peptide RADA16. Atomic force microscopy (AFM) was used to analyze the self-assembling peptide's structural composition. The live/dead staining results showed that RADA16-OPD is not toxic to rASC. After creating a rat skull defect model artificially, micro-CT results revealed that the defect area treated with RADA16-OPD hydrogel had higher bone volume/total volume (BV/TV), a higher trabecular number (TB.N.), and higher bone density (BMD) at different treatment time points. Histological evaluation found that there was more new bone and mature collagen production in the RADA16-OPD group. Meanwhile, the RADA16-OPD group had higher expression of alkaline phosphatase (ALP) and osteocalcin (OCN) than the other two groups. Additionally, immunofluorescence revealed that the RADA16-OPD group had higher levels of platelet/endothelial cell adhesion molecule 1 (CD31) expression than the other two groups. It demonstrated the potential for clinical use of the RADA16-OPD peptide scaffold by promoting bone regeneration and blood vessel development .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2024.2304951 | DOI Listing |
Magn Reson Lett
May 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
The multiple oligopeptides have been regarded as promising alignment media due to their structural diverseness and tendency for self-assembly in solution. Herein, an assembled amphiphilic peptide alignment medium, i.e.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Oral Biology, The Goldschleger School of Dental Medicine, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 26745, ISRAEL.
Tissue regeneration is a complex biological process with limited self-repair capacity, necessitating engineered solutions to restore both mechanical integrity and biological functionality. In tissue engineering and regenerative medicine, 3D printing has emerged as a promising tool for fabricating scaffolds that mimic the natural extracellular matrix (ECM). However, many bioinks are derived from animal sources, posing risks of pathogen contamination and immune responses.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
The self-assembly of short peptides into defined nanostructures is one method for preparing soft materials and gels. Indeed, many useful materials can be prepared by the self-assembly of oligopeptides. The design rules around such peptides are relatively established, and they assume well-defined and pure materials.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Hainan Institute of Northwest A&F University, Sanya, 572024, Hainan Province, China.
Grass carp reovirus type II (GCRV-II) has inflicted substantial economic damage to aquaculture industry due to highly contagious. To combat epidemic GCRV-II, we rational designed and constructed a multi-epitope nanoparticle vaccine (Pep-Fn) that consisted with cell penetrating peptide (CPP), epitope peptides, cell and grass carp-derived ferritin. Firstly, an anti-GCRV-II phage antibody library was constructed to screen antibodies for outer capsid proteins VP4 and VP35.
View Article and Find Full Text PDFBioact Mater
December 2025
State Key Laboratory of New Ceramic Materials, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Bone marrow (BM), a natural niche rich in growth factors and bone marrow mesenchymal stem cells (BMSCs), provides an optimal regenerative microenvironment and is widely used in clinical applications. However, the limited proliferative capacity of BMSCs and the mismatch between bone regeneration and growth factors release constrain their effectiveness in treating critical bone defects. Drawing inspiration from the regenerative properties of BM, we developed self-assembled hybrid microspheres to replicate its function and address these challenges through a tissue engineering approach.
View Article and Find Full Text PDF