98%
921
2 minutes
20
The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c18293 | DOI Listing |
Nanomicro Lett
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm).
View Article and Find Full Text PDFJ Mol Model
September 2025
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.
Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rutgers University-Newark, Newark, New Jersey 07102, United States.
Carbon-hydrogen bond activation is a pillar of synthetic chemistry. While it is generally accepted that Pd is more facile than Ni in C-H activation catalysis, there are no experimental platforms available to directly compare the magnitude of C-H bond weakening between Ni and Pd prior to bond scission. This work presents the first direct measurements of C(sp)-H bond acidity (p) and bond dissociation free energy (BDFE) for a species containing a ligated alkane-palladium interaction (RCH···Pd), also known as an agostic interaction.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland.
Computer simulations play an essential role in the interpretation of experimental multiphoton absorption spectra. In addition, models derived from theory allow for the establishment of "structure-property" relationships. This work contributes to these efforts and presents the results of an analysis of two- and three-photon absorptions for a set comprising 450 conjugated molecules performed at the CAM-B3LYP/aug-cc-pVDZ level.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.
Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.
View Article and Find Full Text PDF