98%
921
2 minutes
20
This paper introduces a novel single-layer microstrip patch element designed to achieve a wide beamwidth, in order to address the growing demand for wide-angle scanning capabilities in modern phased array systems. The proposed element, comprising a slot-etched circular patch and an array of metallized holes arranged in square rings, offers a unique approach to beam shaping. By carefully adjusting parameters such as the slot structure and feeding position, our element is engineered to simultaneously excite both the TM and TM modes, a key feature that contributes to its wide beamwidth characteristics. Through the constructive interference of these modes, our element demonstrates a remarkable 3 dB beamwidth of approximately 150° in both principal planes, showcasing its potential for wide-angle scanning applications. To validate the practical performance of this proposed element, two linear phased arrays are manufactured and experimentally evaluated. The simulation results confirm the wide-angle scanning capability of the antennas in both the E-plane and H-plane. Furthermore, the experimental assessment demonstrates that these linear phased arrays can effectively generate scanning beams within a frequency range of 25 GHz to 28 GHz, covering a wide angular range from -60° to 60°, while maintaining a gain loss within 3 dB. This innovative design approach not only offers a promising solution for achieving a wide beamwidth in microstrip patch elements, but also holds significant potential for the development of cost-effective phased arrays with wide-angle scanning capabilities, making it a valuable contribution to the advancement of phased array technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820321 | PMC |
http://dx.doi.org/10.3390/mi15010003 | DOI Listing |
Molecules
August 2025
Chemistry Department, University of Rome La Sapienza, 00185 Rome, Italy.
In the quest for greener alternatives to conventional organic solvents, Deep Eutectic Solvents (DESs) have gained significant attention due to their sustainability, biodegradability, and tunability. The use of water as an active and genuine component has recently led to the emergence of water-based DESs (wb-DESs). Here, a careful experimental characterization was performed on choline acetate (ChAc)/water mixtures across a range of water:ChAc molar ratios (n = 2-6).
View Article and Find Full Text PDFSci Adv
August 2025
LAMS (Laboratoire d'Archéologie Moléculaire et Structurale), CNRS UMR 8220, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
Renaissance Masters often prepared siccative oils by heating linseed oil with siccatives, particularly lead oxide, inducing partial saponification and altering its properties. Our reconstructions show that lead-saponified oils naturally separate into two phases. In this study, we investigate the differences between these two phases through a comprehensive set of analytical methods, from macrolevel assessments (rheology) to microlevel characterizations (small and wide-angle x-ray scattering, optical microscopy, and scanning electron microscopy) and chemical analyses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Department of Chemistry, Stockholm University, 10691 Stockholm, Sweden.
Metal-organic frameworks such as ZIF-8, grown in situ on nanocellulose (NC), have gained significant attention in recent years due to the versatility of the processing route and multifaceted application in the field of environmental remediation and biomedical applications. However, insights into the interactions between NC and MOF precursors and MOF structure evolution during in situ synthesis are limited or nonexistent. We report the kinetics of ZIF-8 formation on a nanocellulose (NC) aqueous suspension and in water at room temperature, monitored in real time after the addition of ZIF-8 precursors.
View Article and Find Full Text PDFACS Omega
July 2025
POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, Donostia-San Sebastian 20018, Spain.
A process for enhancing polylactide films' heat resistance, shape stability, and toughness has been developed. A star-shaped poly-(ε-caprolactone--d-lactide) (starPCL--PDLA) copolymer was synthesized by using a four-armed PCL macroinitiator. The material was blended with linear poly-(l-lactide) (-PLLA) to form a specific amount of stereocomplex, which endows the material with improved heat resistance.
View Article and Find Full Text PDFSoft Matter
August 2025
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
We examined the crystallization and melting behavior of highly cross-linked polyethylene (xPE) samples, including structural characterization of the resulting crystalline domains. Using γ-ray irradiation, cross-linking was performed in the molten state and not in the solid state. This approach assured a statistical and homogeneous distribution of the cross-link points.
View Article and Find Full Text PDF