Metal-organic frameworks such as ZIF-8, grown in situ on nanocellulose (NC), have gained significant attention in recent years due to the versatility of the processing route and multifaceted application in the field of environmental remediation and biomedical applications. However, insights into the interactions between NC and MOF precursors and MOF structure evolution during in situ synthesis are limited or nonexistent. We report the kinetics of ZIF-8 formation on a nanocellulose (NC) aqueous suspension and in water at room temperature, monitored in real time after the addition of ZIF-8 precursors.
View Article and Find Full Text PDFACS Appl Energy Mater
May 2025
The widespread development of technologies for green hydrogen production strictly relies on the availability of durable electrocatalysts that can operate in either acidic or alkaline electrolytes while using a limited amount of platinum group metals. In this work, we present an effective strategy based on electrodeposition as a low-cost method to obtain low-loading Ru catalysts on carbon electrodes for the hydrogen evolution reaction in an acidic environment. The deposition conditions have been investigated and optimized in order to have uniform coverage, a large number of active sites, and good electrocatalytic performance.
View Article and Find Full Text PDFAs a versatile nanomaterial derived from renewable sources, nanocellulose has attracted considerable attention for its potential applications in various sectors, especially those focused on water treatment and remediation. Here, we have combined atomic force microscopy (AFM) and reactive molecular dynamics (RMD) simulations to characterize the interactions between cellulose nanofibers modified with carboxylate or phosphate groups and the protein foulant model bovine serum albumin (BSA) at pH 3.92, which is close to the isoelectric point of BSA.
View Article and Find Full Text PDFAlkali and quaternary ammonium cations interact with negatively charged cellulose nanocrystals (CNCs) bearing sulfated or carboxylated functional groups. As these are some of the most commonly occurring cations CNC encounter in applications, the thermodynamic parameters of these CNC-counterion interactions were evaluated with isothermal titration calorimetry (ITC). Whereas the adsorption of monovalent counterions onto CNCs was thermodynamically favourable at all evaluated conditions as indicated by a negative Gibbs free energy, the enthalpic and entropic contributions to the CNC-ion interactions were found to be strongly dependent on the hydration characteristics of the counterion and could be correlated with the potential barrier to water exchange of the respective ions.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2023
Ammonia (NH) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber-Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.
View Article and Find Full Text PDFMembranes (Basel)
October 2022
The electrochemical synthesis of ammonia through the nitrogen reduction reaction (NRR) is receiving much attention, since it is considered a promising alternative to the Haber-Bosch process. In NRR experiments, a Nafion membrane is generally adopted as a separator. However, its use is controversial since ammonia can be trapped in the membrane, to some extent, or even pass through it.
View Article and Find Full Text PDFLipidomics is strategic in the discovery of biomarkers of neurodegenerative diseases (NDDs). The skin surface lipidome bears the potential to provide biomarker candidates in the detection of pathological processes occurring in distal organs. We investigated the sebum composition to search diagnostic and, possibly, prognostic, biomarkers of Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFJ Asthma Allergy
February 2021
Purpose: Severe eosinophilic asthma (SEA) is characterized by high eosinophilia, severe symptoms, important comorbidities, frequent exacerbations, and poor asthma control. Benralizumab, targeting the interleukin-5 receptor alpha, proved effective in inducing rapid eosinophil depletion and amelioration of symptoms and lung function; it also allowed to reduce exacerbations and the use of oral corticosteroids (OCS). The present case series, spanning different subtypes of SEA, aimed at expanding the real-world experience with benralizumab in Italy.
View Article and Find Full Text PDFMolecules
September 2020
The preparation of microcapsules composed by natural materials have received great attention, as they represent promising systems for the fabrication of micro-containers for controlled loading and release of active compounds, and for other applications. Using polysaccharides as the main materials is receiving increasing interest, as they constitute the main components of the plant cell wall, which represent an ideal platform to mimic for creating biocompatible systems with specific responsive properties. Several researchers have recently described methods for the preparation of microcapsules with various sizes and properties using cell wall polysaccharide nanomaterials.
View Article and Find Full Text PDFOxygen evolution reaction (OER) is a demanding step within the water splitting process for its requirement of a high overpotential. Thus, to overcome this unfavourable kinetics, an efficient catalyst is required to expedite the process. In this context, we report on Ni foam functionalised with low cost iron (Fe) and iron hydroxide (Fe(OH) ), wet chemically synthesized as OER catalysts.
View Article and Find Full Text PDFWith increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water.
View Article and Find Full Text PDFBiomacromolecules
August 2019
The thermodynamics of interactions between cations of the second group of the periodic table and differently negatively charged cellulose nanocrystals was investigated using isothermal titration calorimetry (ITC). The interaction of cations with the negatively charged CNCs was found to be endothermic and driven by an increase in entropy upon adsorption of the ions, due to an increase in degrees of freedom gained by the surface bound water upon ion adsorption. The effect was pH-dependent, showing an increase in enthalpy for cellulose suspensions at near-neutral pH (6.
View Article and Find Full Text PDFIn this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration.
View Article and Find Full Text PDFIn this work, we investigate some major issues for the use of silicon photomultiplier (SiPM) devices in continuous wave functional near-infrared spectroscopy (CW fNIRS). We analyzed the after-pulsing effect, proposing the physical mechanism causing it, and determining its relevance for CW fNIRS. We studied the SiPM transients occurring as the SiPM device goes from the dark (LED in off state) to the illumination (LED in on state) conditions, and vice-versa.
View Article and Find Full Text PDFThis work explored the influence of the citrus pectin degree and pattern of methylesterification on its interaction with Zn using isothermal titration calorimetry (ITC). Pectin samples with a comparable degree of methylesterification (DM) but distinct distribution patterns of non-methylesterified carboxylic groups (absolute degree of blockiness, DB) were produced through enzymatic (blockwise pattern) or alkaline (random pattern) demethylesterification. The pectin-Zn interaction was found to be endothermic, in which a positive entropy change compensated for the unfavorable endothermic enthalpy change, driving the interaction between pectin and Zn.
View Article and Find Full Text PDFBiomacromolecules
August 2018
One of the most important aspects in controlling colloidal deposition is manipulating the homogeneity of the deposit by avoiding the coffee-ring effect caused by capillary flow inside the droplet during drying. After our previous work where we achieved homogeneous deposition of cellulose nanocrystals (CNCs) from a colloidal suspension by reinforcing Marangoni flow over the internal capillary flow (Gençer et al. Langmuir 2017, 33 (1), 228-234), we now set out to reduce the importance of capillary flow inside a drying droplet by inducing gelation.
View Article and Find Full Text PDFNegatively charged ions readily interact with the surface of positively charged pyridinium-grafted cellulose nanocrystals. In this work we investigated the thermodynamics of these interactions using isothermal titration calorimetry. We investigated the effect of the ionic charge, using carboxylate salts with different valence (1-4), and compared it with sodium sulfate as another delocalized ionic charge.
View Article and Find Full Text PDFCellulose nanofibers (CNFs) have interesting physicochemical and colloidal properties that have been recently exploited in novel drug-delivery systems for tailored release of poorly soluble drugs. The morphology and release kinetics of such drug-delivery systems heavily relied on the drug-CNF interactions; however, in-depth understanding of the interactions was lacking. Herein, the interactions between a poorly soluble model drug molecule, furosemide, and cationic cellulose nanofibers with two different degrees of substitution are studied by sorption experiments, Fourier transform infrared spectroscopy, and molecular dynamics (MD) simulation.
View Article and Find Full Text PDFNeurophotonics
July 2017
We report development, testing, and characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers.
View Article and Find Full Text PDFThe interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of substitution. The binding mechanism between the positively charged pyridinum-grafted cellulose nanocrystals and BSA was found to be endothermic and based on charge neutralization.
View Article and Find Full Text PDFWe experimentally analyze the signal-to-noise ratio of continuous wave (CW) near infrared spectroscopy (NIRS) reflectance systems based on light emitting diodes and silicon photomultipliers for high performance low cost NIRS biomedical systems. We show that under suitable experimental conditions such systems exhibit a high SNR, which allows an SDS of 7 cm, to our knowledge the largest ever demonstrated in a CW-NIRs system.
View Article and Find Full Text PDFHydrogenated amorphous Si (a-Si:H) solar cells are strongly affected by the well known Staebler-Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a-Si:H and to the stability and motion of H-related species in the a-Si:H lattice.
View Article and Find Full Text PDFSensors (Basel)
September 2012
The aim of this paper is to summarize the efforts carried out so far in the fabrication of Si-based biosensors by a team of researchers in Catania, Italy. This work was born as a collaboration between the Catania section of the Microelectronic and Microsystem Institute (IMM) of the CNR, the Surfaces and Interfaces laboratory (SUPERLAB) of the Consorzio Catania Ricerche and two departments at the University of Catania: the Biomedical Science and the Biological Chemistry and Molecular Biology Departments. The first goal of our study was the definition and optimization of an immobilization protocol capable of bonding the biological sensing element on a Si-based surface via covalent chemical bonds.
View Article and Find Full Text PDFIntroduction. The purpose of this study was to evaluate the role of renal cryoablation in patients with solitary kidneys with the goals of tumor destruction and maximal renal parenchymal preservation. Methods.
View Article and Find Full Text PDFSeveral evidences have demonstrated that adult mammals could achieve a wide range of spontaneous sensory-motor recovery after spinal cord injury by means of various forms of neuroplasticity. In this study we evaluated the possibility that after low-thoracic spinal cord hemisection in the adult rat, significant hindlimb locomotor recovery could occur, and that this recovery may be driven, at least in part, by mechanisms of synaptic plasticity. In order to address these issues, we measured the expression levels of synapsin-I and brain-derived neurotrophic factor by Western blotting, at various time points after hemisection and correlated them with the motor performance on a grid walk test.
View Article and Find Full Text PDF