A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals. | LitMetric

Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals.

Biomacromolecules

Renewable Materials and Nanotechnology Research Group, Department of Chemical Engineering , KU Leuven , Campus Kulak Kortrijk, Etienne Sabbelaan 53 , Box 7659, 8500 Kortrijk , Belgium.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thermodynamics of interactions between cations of the second group of the periodic table and differently negatively charged cellulose nanocrystals was investigated using isothermal titration calorimetry (ITC). The interaction of cations with the negatively charged CNCs was found to be endothermic and driven by an increase in entropy upon adsorption of the ions, due to an increase in degrees of freedom gained by the surface bound water upon ion adsorption. The effect was pH-dependent, showing an increase in enthalpy for cellulose suspensions at near-neutral pH (6.5) when compared to acidic pH (2). Sulfated cellulose nanoparticles were found to readily interact with divalent ions at both pH levels. The adsorption on carboxylate nanocrystals was found to be pH dependent, showing that the carboxylic group needs to be in the deprotonated form to interact with divalent ions. For the combined system (sulfate and carboxylate present at the same time), at neutral pH, the adsorption enthalpy was higher than the value obtained from cellulose nanocrystals containing a single functional group, while the association constant was higher due to an increased favorable entropic contribution. The higher entropic contribution indicates a more restricted surface-bound water layer when multiple functionalities are present. The stoichiometric number was nearly constant for all systems, showing that the adsorption depends almost completely on the ion valency and on the amount of ionic groups on the CNC surface, independent of the type of functional group on the CNC surface as long as it is deprotonated. In addition, we showed that the reduction in Gibbs free energy drives the ionotropic gelation of nanocellulose suspensions, and we show that ITC is able to detect gel formation at the same time as determining the critical association concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b00755DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
12
negatively charged
8
interact divalent
8
divalent ions
8
functional group
8
entropic contribution
8
cnc surface
8
cellulose
5
adsorption
5
thermodynamic study
4

Similar Publications