98%
921
2 minutes
20
In response to the increasing demand for miniaturization and lightweight equipment, as well as the challenges of application in harsh environments, there is an urgent need to explore the new generation of high-temperature-resistant film capacitors with excellent energy storage properties. In this study, we report an all-organic composite system based on two polymers with similar densities and high glass transition temperatures, achieving a synergistic effect of dielectric constant and breakdown strength. The preparation of the composite is simple, overcoming the challenge of dispersing nanoparticles in traditional organic-inorganic systems. The high polarity of polyethersulfone can modulate the polarization properties of the composites and, through a physical electrostatic effect, inhibit dipole relaxation, further reducing the current density of the composite dielectric at high temperatures, resulting in a significant improvement in insulating properties. The 9 : 1 composite dielectric at 150 °C demonstrates an energy storage density of up to 6.4 J cm and an efficiency of 82.7%. This study offers a promising candidate material and development direction for the next-generation energy storage capacitors with broad application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh01822a | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFNano Lett
September 2025
Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.
We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
The metal-nitrogen chelated species, MN, have shown promise as efficient electrocatalysts for nitrate reduction, yet the symmetric arrangement of N atoms results in suboptimal adsorption affinity toward reaction substrates and intermediates. The current approaches to breaking the symmetry of MN suffer from inaccuracy and inhomogeneity because of the lack of strategies stemming from molecular design aspects. Herein, we report the construction of symmetry-broken MNO sites in coordination polymers via sequential coordination-covalent control in a one-pot reaction.
View Article and Find Full Text PDF